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Abstract—Multimedia streaming to mobile devices is one of the
main sources of network congestion. As bandwidth requirements
are continually increasing and users are becoming more quality-
aware, there is a growing need for QoE-aware multimedia
adaptation solutions. This paper presents a novel mechanism
named ResCompute, which enables to automatically compute
threshold values up to which the video resolution can be
decreased while still maintaining a predefined QoE level. The
mechanism combines full-reference objective VQA metrics and
rules for mapping their values to the subjective MOS scale. The
results from a subjective study with 60 participants show that
mapping rules for full-reference VQA metrics such as PSNR,
SSIM and VIFp provide up to 72.22% MOS level match accu-
racy across different categories of multimedia clips. Moreover,
accurate resolution threshold values computation requires careful
selection of the VQA metrics mapping rules to balance the under
and overestimation of subjective video quality.

Index Terms—Multimedia quality, QoE, objective and subjec-
tive quality assessment, content adaptation and scaling.

I. INTRODUCTION

Mobile devices such as smartphones and tablets are be-
coming more powerful and affordable, and are being used
for a multitude of activities including online multimedia
applications such as IPTV, VoD, video chat and multimedia-
based learning. However, multimedia streaming to mobile
devices is a resource intensive task that requires significant
network bandwidth, computation and battery power to stream,
to decode and to display the content [1]. Although 5G
technologies will increase capacity and newer video codecs
such as HEVC provide higher video compression efficiency,
network providers will continue to struggle with congestion.
In fact, the mobile video traffic was estimated to increase 8-
fold between 2015 and 2020, and to account for 75% of the
total mobile data traffic [2]. At the same time, mobile users
are becoming increasingly quality-aware with the proliferation
of high-resolution displays and multimedia content.

In this context, there is an increasing need for QoE-aware
solutions [3], to enhance or complement existing standards
such as MPEG-DASH [4]. While QHD and UHD screen
resolutions are increasingly used in mobile devices, previous
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research has shown that UHD 2160p video resolution has little
benefit in terms of user perceived video quality over full-HD
1080p video resolution [5].

This paper presents a novel mechanism (ResCompute) for
automatic computation of threshold values up to which the
video resolution can be decreased while still maintaining
a predefined QoE level. The ResCompute mechanism uses
full-reference objective VQA metrics and rules for mapping
their continuous values to the discrete subjective MOS scale
(i.e., 1 – bad, 2 – poor, 3 – fair, 4 – good and 5 – excellent). Full-
reference metrics are used because the ResCompute mecha-
nism is primarily intended for video on demand applications,
and the resolution threshold values are computed offline for
each multimedia clip. However, the mechanism could be
extended to use reduced-reference [6] or no-reference [7]
metrics for live streaming application. While a multitude of
objective VQA metrics have been proposed, previous research
studies have focused on evaluating their performance in terms
of correlation after nonlinear regression, without mapping
their values to the discrete MOS scale [8], [9]. Moreover,
the evaluation was typically done on generic video content
databases that consist mainly of natural clips such as news,
sports and movies [10]. Non-natural clips that are typically
computer generated such as animations were often excluded as
they were considered to complicate the metrics’ evaluation [9].

This paper also presents objective and subjective results
that investigate how choosing different VQA metrics mapping
rules, impacts on the resolution threshold computation. The in-
vestigation is done for both natural and non-natural multimedia
clips. Moreover, the investigation compares six mapping rules
corresponding to three full-reference metrics PSNR, SSIM
and VIFp. The selected metrics are highly representative as
they correspond to different categories: traditional point-based,
natural visual statistics-based, and perceptual HVS modelling-
based metrics respectively [8].

The rest of the paper is structured as follows. Section II
presents an adaptive multimedia framework that incorporates
the proposed ResCompute mechanism, and details the pro-
cedure used for computing the resolution threshold values.
Section III present the setup for the objective and subjective
study, while section IV presents the results analysis. section V
concludes the paper and presents future work directions.
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II. DQAMLEARN FRAMEWORK OVERVIEW

DQAMLearn is an adaptive framework that aims to support
educational multimedia content delivery to mobile devices, and
to provide learners with a good QoE even in resource con-
strained situations. The framework will be integrated within
the large pan-European learning platform that is curently being
built by NEWTON [11], a large scale EU Horizon 2020
project. The platform will integrate and deploy a multitude of
novel mechanisms and technologies, including: interconnected
fab labs and virtual labs, multi-modal and multi-sensorial
media distribution, augmented reality, gamification, game-
based learning, and self-directed learning. Additionally, the
NEWTON platform will perform personalisation and adap-
tation to improve the learning process, and to increase the
learning outcomes and learner QoE. The following subsections
provide more details on the multimedia profiling and the novel
ResCompute mechanism incorporated by the framework.

A. Multimedia Profiling

The DQAMLearn framework overcomes the multitude of
mobile devices users may have by grouping them into a
manageable number of device classes based on their screen
resolution. Each device class is associated a video profile
that would provide an ‘excellent’ user-perceived video qual-
ity level for that particular device class. A video profile
is represented by triples of reference values for the video
resolution, framerate and bitrate, the three most important
encoding parameters affecting the video quality. A particular
video profile is represented conceptually as in (1), whereas the
set of video profiles associated to the X number of mobile
device classes is represented as in (2).

V ideoProfilex = 〈RefRESx, RefFRx, RefBRx〉 (1)

V =
{
V ideoProfilex; x = 1, X

}
(2)

Based on each video profile, the framework creates a
reference multimedia clip version RefMovix by transcoding
the original multimedia clip OrgMovi, as in (3). The set of
reference clip versions that are created is represented as in (4).

OrgMovi
Transcoding−−−−−−−−→
V ideoProfilex

RefMovix (3)

M =
{
RefMovix; x = 1, P i; P i ≤ X

}
(4)

where i is the clip index, while P i is the number of reference
versions created for that particular clip. P i can be lower than
the number of device classes X because a reference clip
version is created only if the video resolution for that profile
is lower or equal to the video resolution of the original clip.

The DQAMLearn framework builds on our preliminary
research work, that proposed multimedia profiling recommen-
dations in terms of video and audio encoding characteristics
for five classes of mobile devices covering a broad range
of display resolutions, that were proposed for the wireless
streaming scenario in [12].

B. QoE-aware Resolution Threshold Values Computation

Due to various resource constraints such as limited net-
work bandwidth, in often situations it may not be possible
to efficiently stream the reference clip version RefMovix
that would provide an excellent quality level for a particular
mobile device. The DQAMLearn framework would continu-
ously monitor the network performance, and if necessary it
will switch to another reference clip version having a lower
resolution value, RefMoviy where y < x.

To avoid streaming a clip version whose video quality would
be too low to support a good QoE, the framework incorporates
the novel ResCompute mechanism. ResCompute enables to
compute threshold values indicating how much the video
resolution can be decreased from the reference value while
still maintaining a predefined user-perceived video quality
level named MOS threshold (ThMOS). A MOS threshold is
specified on a discrete 5-point scale with subjective meaning
for each level (i.e., 1 – bad, to 5 – excellent). The resolution
threshold values corresponding to ThMOS are computed
separately for each reference clip version RefMovix, and for
each multimedia clip to account for video content complexity.

The ResCompute makes use of full-reference objective
VQA metrics to estimate the video quality of the lower
resolution clip version RefMoviy relative to the quality of the
reference version RefMovix. Multiple VQA metrics could be
combined in order to increase the overall quality estimation
performance [13], as in (5). The weights for the different VQA
metrics could be assigned based on training data from public
VQA databases [10], by taking into account the performance
of each metric for different video content and resolution.

EMOSi
y =

N∑
n=1

WV QAMn ·MOSi
V QAMn,y (5)

where MOSi
V QAMn,y

is the quality estimated with the
V QAMn metric, WV QAMn

is the weight associated to this
metric in the overall score, while N is the number of metrics.

Objective VQA metrics express video quality on continuous
scales with no meaning (e.g., 0 – 100 for PSNR, 0 – 1 for SSIM
and VIFp), thus the objective values are mapped to equivalent
MOS scores on the subjective 5-point scale, as in (6).

Qi
V QAMn,y

Mapping Rule−−−−−−−−−→MOSi
V QAMn,y (6)

Since video quality is non-linear, the conversion of objective
values to equivalent MOS scores is done based on predefined
mapping rules. Despite the multitude of VQA metrics, very
few papers have proposed mapping rules to interpret the objec-
tive values. Table I presents mapping rules that were identified
in the literature for the PSNR and SSIM metrics [14], [15].
Additionally, the table presents mapping rules for the three
metrics that were automatically generated based on data from
public VQA databases, by making use of the novel VQAMap
mechanism proposed by us in [16], [17]. The mapping rules
for the same VQA metric are different as they were generated
based on different content.



TABLE I
RULES FOR MAPPING THE VALUES OF PSNR, SSIM AND VIFP FULL-REFERENCE OBJECTIVE VQA METRICS TO THE SUBJECTIVE MOS SCALE.

MOS PSNR(K) [14] PSNR(Z) [15] PSNR(M) [16] SSIM(Z) [15] SSIM(M) [16] VIFp(M) [16]

5 (Excellent) ≥37 ≥45.0 ≥36 ≥0.99 ≥0.93 ≥0.56

4 (Good) ≥31 & <37 ≥33.0 & <45.0 ≥29 & <36 ≥0.95 & <0.99 ≥0.85 & <0.93 ≥0.40 & <0.56

3 (Fair) ≥25 & <31 ≥27.4 & <33.0 ≥24 & <29 ≥0.88 & <0.95 ≥0.76 & <0.85 ≥0.27 & <0.40

2 (Poor) ≥20 & <25 ≥18.7 & <27.4 ≥20 & <24 ≥0.50 & <0.88 ≥0.62 & <0.76 ≥0.16 & <0.27

1 (Bad) <20 <18.7 <20 <0.50 <0.62 <0.16

Algorithm 1: Resolution threshold computation algorithm.

1 Input:
2 ThMOS — Predefined threshold level for the estimated

user-perceived video quality;
3 RESi

x — Set of reference resolution values that are lower or equal
with the resolution of RefMovix reference clip version.

4 Output:
5 ThRESi

x — Resolution threshold value corresponding to ThMOS
and the RefMovix reference clip version.

6 Procedure:
7 begin

// Initialisation
8 FoundTh = FALSE ; // threshold not found
9 w = x− 1 ; // check lower resolution values in

decresing order
// Threshold computation

10 while (w ≥ 1) and (FoundTh = FALSE) do
11 Compute EMOSi

y as in (5) ;
12 if (EMOSi

y < ThMOS) then
13 w = w + 1 ;
14 ThRESi

x = RefRESy ; // threshold is set
to previous value

15 FoundTh = TRUE ;
16 else // proceed to check next resolution
17 w = w − 1
18 end if
19 end while
20 if (FoundTh = FALSE) then
21 ThRESi

x = RefRESy=1 ; // threshold is set
to lowest resolution value

22 end if
23 end

Algorithm 1 illustrates the procedure used by the ResCom-
pute mechanism to compute the resolution threshold value
ThRESi

x for the reference clip version RefMovix. Along
with ThMOS, the mechanism takes as input the set of
reference resolutions RESi

x that are lower and equal with
RefRESx, represented as in (7).

RESi
x =

{
RefRESy, y = 1, x

}
(7)

ResCompute gradually iterates through the reference resolu-
tions in a decreasing order, estimates the user-perceived quality
of each lower resolution version EMOSi

y , and compares
this against the ThMOS threshold taken as input. The set
of estimated user-perceived quality values for all the lower
resolution clip versions, is represented as in (8).

EMOSRESi
x
=
{
EMOSi

y, y = 1, x− 1
}

(8)

The resolution threshold value computation process stops
when QuTComute encounters a clip version for which the
estimated user-perceived quality EMOSi

y is lower than the
predefined user-perceived quality threshold ThMOS. In this
case the resolution threshold value ThRESi

x is taken as the
last resolution value for which EMOSi

y ≥ ThMOS. Alter-
natively, the process stops after checking all lower resolution
clip versions, in which case the resolution threshold is set as
the lowest reference resolution value RefRESy=1.

III. TEST SETUP

Objective and subjective testing was conducted to inves-
tigate how the performance of ResCompute mechanism is
influenced by choosing different mapping rules for the PSNR,
SSIM and VIFp metrics. As Table I shows, the mapping
rules for the same metric vary considerably. Selecting between
different mapping rules can have practical implications, as it
may lead to under or overestimation of user-perceived video
quality. For example, a PSNR value of 40 dB corresponds to
‘excellent’ quality level according to [14] and [16], but only
to ‘good’ level according to [15].

A. Multimedia Test Sequences

Six high-quality clips were used for the objective and
subjective testing. Three clips are natural (i.e., ArtOfBook,
NitrogenIceCream and ProjectPlanning), while three clips are
non-natural (i.e., AtomSize, CoralsIntro and PhotoEditing).
The clips correspond to six different categories of educational
multimedia clips as detailed in [18].

A 4min long continuous test sequence was extracted from
each multimedia clip. Five versions were created for each
multimedia test sequence in order to illustrate the principle
of the ResCompute mechanism. The reference clip version
for threshold values computation had a video resolution of
1280×720 pixels, while the resolution of the lower quality
versions were: 848×480, 640×360, 427×240 and 320×180
respectively. The reference framerate value was 30 fps for all
five versions. The reference video bitrate values providing an
excellent quality level for the five resolutions were selected as:
1800, 1000, 550, 300 and 165 kbps. These were based on the
multimedia profiling recommendations for wireless streaming
of H.264 encoded videos to mobile devices presented in [12].
Apart of video resolution and bitrate all other video and audio
encoding settings were maintained constant.
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Fig. 1. Procedure used for measuring the PSNR, SSIM and VIFp full-
reference objective VQA metrics for the lower resolution versions.

B. Objective VQA Metrics Measurement Procedure

Fig. 1 illustrates the batch processing procedure used for
measuring the full-reference objective VQA metrics by con-
sidering the 720p reference sequence and a corresponding
version with lower resolution such as 480p, both compressed
with H.264 video codec in .mp4 format. AviSynth [19]
nonlinear video editor was used for performing on-the-fly
video editing without the need for recompression. Since full-
reference VQA metrics require spatio-temporal synchronisa-
tion, the resolution of the lower quality version was upscaled
to the 720p value of the reference sequence version using the
BicubicResize() function from AviSynth.

The MMSPG Video Quality Measurement Tool (VQMT)
[20], was used to compute the PSNR, SSIM and VIFp
objective metric values. The tool requires as input uncom-
pressed files, thus the reference version and the corresponding
upscaled version were converted to raw YUV format using
FFmpeg [21]. The tool computes the specified metric for each
frame and saves the values in a .csv file. The metric value
for a particular test sequence is then computed as the average
across all frames.

C. Subjective Testing Procedure

The subjective study was conducted with 60 non-expert
volunteer participants (37 males, 23 females), aged between
20 to 53 years old. For the subjective study each quality level
corresponding to the reference and lower resolution values was
displayed for a 15 sec interval of the 4 min long test sequence.
The participants were asked to view the test sequences and
continuously rate their perceived video quality.

The subjective study followed the standardised Single Stim-
ulus Continuous Quality Evaluation (SSCQE) procedure, and
used a calibrated 0 – 100 continuous scale with annotated
discrete MOS levels (i.e., 0 – 19 ‘bad’ to 80 – 100 ‘excel-
lent’) [22]. The rating was done using an on-screen slider
displayed over the video player. The viewing and rating of the
test sequences was done on a tablet device, having a 7 inch
screen size and 1280×800 resolution.

Using long test sequences with changing quality level
enables a real-world like multimedia viewing experience, and
was preferred to displaying the same short sequence with
different quality level multiple times. To minimise the impact
of factors such as fatigue the six test sequences were displayed
in random order across the participants.

IV. TEST RESULTS

A. Objective Results Analysis

The objective analysis was conducted in order to investigate
how the estimated user-perceived quality and the resolution
threshold values computed by ResCompute would be impacted
by choosing a different VQA metric mapping rule.

Fig. 2 presents the objective video quality assessment re-
sults. The plots present the average PSNR, SSIM and VIFp
values for each lower resolution test sequence version (i.e.,
480p, 360p, 240p and 180p), computed relative to the cor-
responding 720p reference version. The greyscale bands in
the plots indicate the equivalent QoE levels on the 5-point
MOS scale (i.e., 1 – ‘bad’ to 5 – ‘excellent’), based on the six
mapping rules from Table I.

The results show that the three metrics considered exhibit
a slightly different behaviour. In particular, the PSNR and
VIFp decrease approximately linear with the decrease in video
resolution, while SSIM presents a more concave decrease. The
three metrics also differ in terms of the range of values cov-
ered. The objective VQA metric values cover approximately
20% of the first half of the scale 0 – 100 scale for PSNR, the
top 20% of 0 – 1 scale for SSIM, and the middle 50% of the 0 –
1 scale for VIFp. The results also show that the PSNR, SSIM
and VIFp values depend on the video content, with the lines
corresponding to the different clips being stacked and with few
intersections. Moreover, the VQA metrics present lower values
for clips with high spatial index such as ProjectPlanning and
PhotoEditing, confirming that more detailed clips are more
sensitive to the resolution decrease.

Analysing the objective results in terms of equivalent MOS
scores, the results show that the resolution threshold value
computed by ResCompute would depend not only on the
content characteristic but also on the particular VQA metric
and the mapping rule used. The MOS

(Z)
PSNR and MOS

(Z)
SSIM

equivalent scores range from ‘good’ to ‘poor’, while the
MOS

(M)
PSNR and MOS

(M)
SSIM scores range from ‘excellent’

to ‘fair’. As opposed, the MOS
(K)
PSNR and MOS

(M)
V IFp range

from ‘excellent’ to ‘poor’.
For example, taking as input a ThMOS of 5 – excellent the

resolution threshold value computed by ResCompute for the
AtomSize test sequence would be: 360p based on MOS

(K)
PSNR,

MOS
(M)
PSNR or MOS

(M)
V IFp, 720p based on MOS

(Z)
PSNR and

MOS
(Z)
SSIM , or 240p based on MOS

(M)
SSIM . The objective

results analysis confirm the importance of identifying both
accurate VQA metrics and mapping rules, in order to enable
accurate computation of the resolution threshold values.
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Fig. 2. Average PSNR, SSIM and VIFp values and equivalent MOS scores, for the lower resolution test sequence versions.

B. Subjective Results Analysis

Fig. 3 presents the subjective MOS estimation accuracy re-
sults of the six mapping rules for PSNR, SSIM and VIFp met-
rics. The subjective MOS scores were obtained by averaging
the ratings across all 60 participants and across the 15 seconds
corresponding to each video resolution. The continuous MOS
scores expressed on the 0 – 100 scale, were then converted to
discrete MOS scores on the 1 – 5 scale as in [22] (i.e., 0 – 19
to ‘bad’, 20 – 39 to ‘poor’, 40 – 59 to ‘fair’, 60 – 79 to ‘good’,
and 80 – 100 to ‘excellent’).

Fig. 3 present the percentage distributions for three possible
cases: exact match (e.g., MOS

(K)
PSNR = MOS), overesti-

mation (e.g., MOS
(K)
PSNR > MOS), and underestimation

(e.g., MOS
(K)
PSNR < MOS) of subjective user-perceived

video quality. The results are presented separately for the
natural clips (i.e., ArtOfBook, NitrogenIceCream and Project-
Planning), non-natural clips (i.e., AtomSize, CoralsIntro and
PhotoEditing), as well as across all six clips.

The subjective results show that the MOS
(M)
SSIM mapping

rule presents the highest accuracy of 72.22%, with the subjec-
tive MOS being overestimated for 22.22% and underestimated
for 5.58% of test cases (i.e., where a test case represents
one quality level for one clip). Moreover, this provides the
same performance for both natural and non-natural multimedia

clips. The MOS
(Z)
PSNR and MOS

(Z)
SSIM mapping rules present

the lowest MOS estimation accuracy of 44.44% and 41.67%
respectively across all clips. The two mappings tend to un-
derestimate the subjective MOS and the results are consistent
when looking separately for natural and non-natural clips.

As opposed, the MOS
(K)
PSNR, MOS

(M)
PSNR or MOS

(M)
V IFp

present over 60% accuracy across all clips, and tend to be
less consistent. When not perfect match, these mapping tend
to overestimate the subjective MOS for natural clips and
underestimate it for non-natural clips. However, linking back
to the objective results, the 360p resolution threshold indicated
by these three mappings for the AtomSize clip would strike
the balance between the 240p threshold value underestimated
by MOS

(M)
SSIM , and the 720p threshold overestimated by

MOS
(Z)
PSNR and MOS

(Z)
SSIM .

V. CONCLUSIONS

As users are becoming more quality-aware, and network
resources more constrained there is a growing need for QoE-
aware multimedia adaptation solutions. This paper presented
a novel mechanism for automatic computation of threshold
values up to which the video resolution can be decreased while
still maintaining a predefined QoE level. The mechanism uses
full-reference objective VQA metrics and rules for mapping
their values to the subjective MOS scale.
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Fig. 3. Subjective MOS estimation accuracy of different PSNR, SSIM and VIFp mapping rules for natural, non-natural and all clips.

The research also investigated how the resolution thresh-
old values computation is influenced by choosing different
mapping rules for the PSNR, SSIM and VIFp metrics. The
objective results analysts has shown that the VQA metric
values are dependant on video content characteristics, and in
particular of spatial information when decreasing the video
resolution. Therefore, it is necessary to compute the resolution
threshold values individually for each multimedia clip.

Moreover, the subjective results analysis has shown that the
mapping rules provide good QoE estimation performance with
up to 72.22% MOS level match accuracy. However, even for
the same VQA metric it is important to carefully choose the
mapping rule to find a good balance between underestimating
and overestimating the subjective user-perceived quality.

Future work will enhance the proposed multimedia adapta-
tion framework by considering other video characteristics such
as bitrate and framerate. Further objective and subjective video
quality assessment and data analysis will also be conducted.
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