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ABSTRACT

Virtual labs enable inquiry-based learning where students can im-
plement their own experiments using virtual objects and apparatus.
Although the benefits of adaptive and personalised learning are well
recognised, these were not thoroughly investigated in virtual labs.
This paper presents the architecture of an interactive science virtual
lab that personalises the learning journey based on the student’s
self-directed learning (SDL) and self-efficacy (SE) levels. The re-
sults of a pilot in two secondary schools showed that both students
with low and high SDL and SE level improved their knowledge, but
students with low SDL and SE had a higher number of incorrect
attempts before completing the experiment.
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1 INTRODUCTION

The low and decreasing engagement with STEM education is in-
creasingly raising concerns with governments, organisations and
researchers. Students often lose interest in STEM subjects during
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secondary education due to factors such as perceived difficulty of
the subjects and students’ implicit beliefs on their ability [18, 20].
Traditional STEM education makes use of physical labs that are
resource intensive and costly to maintain. Virtual labs aim to over-
come issues with physical labs, as well as to make practical science
education available to online learners [12]. Several major projects
have focused on virtual labs including the Go-Lab project that cre-
ated a platform where educators can host and share virtual labs,
apps and inquiry learning spaces [6], and the GridLabUPM platform
that hosts virtual labs in the fields of electronics, chemistry, physics
and topography [7].

Virtual labs enable inquiry-based learning which is a form of
active learning that starts by posing questions, problems or sce-
narios. Students can create their own experiments and practice
at their own pace in a safe environment. Acquiring inquiry skills
during secondary education is an important step towards develop-
ing scientific literacy and pursuing further STEM education and
careers [10]. Previous studies showed that personalised learning
positively correlates with science performance even on country
level data [17]. However, most virtual labs for STEM education lack
personalisation and adaptation features [12].

This paper evaluates an interactive personalised STEM virtual
lab for secondary school students. The lab teaches concepts about
atoms, isotopes and molecules, and the learning journey is person-
alised based on students’ SDL and SE levels. Self-directed learning
is a process through which individuals set goals, find resources and
methods, and evaluate their progress through critical reflection [4].
SDL is an important aspect in virtual labs where learners need to di-
rect their learning experiences, pose their own questions, set goals,
conduct experiments and reflect on their learning. Self-efficacy
represents people’s beliefs in their capabilities to accomplish spe-
cific tasks [1]. As students have different traits giving too much
challenge, goal spectrum and strategies can be overwhelming for
students with low SDL and SE levels.

This research work is part of the NEWTON project (http://www.
newtonproject.eu) that focuses on increasing learner quality of
experience [15, 16], improve the learning process and increase
learning outcomes by employing innovative technologies such as
AR/VR [3], virtual labs [8, 11], remote fabrication labs [19], adaptive
and personalised multimedia and mulsemedia [2], interactive edu-
cational games [14], as well as innovative pedagogical approaches
such as flipped classroom and problem-based learning [5].
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2 PERSONALISED VIRTUAL LAB

2.1 User Modelling and Personalisation

Atomic Structure is an interactive personalised virtual lab for sec-
ondary level students, that teaches abstract scientific concepts such
as the structure of atoms, gaining and losing electrons, bonding of
molecules. The lab includes various levels of personalisation: learn-
ing loop-based personalisation, feedback-based personalisation,
innovative pedagogies-based personalisation (i.e., inquiry-based
learning, learning in flow, SDL and SE), gamification-based person-
alisation, and special education needs-based personalisation (i.e.,
sign language translation for hearing impaired students). A detailed
description of the lab is provided in [13].

Students’ SDL level is determined at the beginning of each sec-
tion of the lab (i.e., atoms, isotopes and molecules), by asking them
to answer three questions related to self management, desire for
learning, and self control dimensions of the SDL readiness scale [9].
Student’s SE level is determined through one question related to
their perceived ability to complete the lab [1]. All questions are
answered on a 7-point Likert scale. Student’s SDL and SE levels
are used to personalise the feedback, the difficulty level of practice
quizzes, the type of elements they are given to build, as well as the
available options from which they can set own goals in the inquiry-
based learning phase. Figure 1 shows an example of personalisation
in terms of feedback given to students depending on their SDL and
SE levels. The first picture shows low level of SDL and SE, thus
the feedback aims to reduce possible anxiety, reassure the students
that help will be provided and advice them to set less challenging
goals. The second picture shows high level of SDL and SE, thus the
feedback aims to set the students for the challenge and reassure
that they can explore and self-direct through the challenge.

Figure 2 shows the interactive atom builder. The inquiry-based
learning phase is offered at the end of each section of the lab, where
students can set their own goals and experiment further within the
atom, isotope and molecule builders respectively.

2.2 System Architecture

Figure 3 presents the architecture of the virtual lab and its inte-
gration with the NEWTELP platform developed by the NEWTON
project. The lab integrates both SSO login and standalone sign-
up/login in order to maximize its exploitation potential. The SSO
login component enables sign-on for users that have a NEWTELP
account, while the standalone sign-up/login enables access for users
that do not have a NEWTELP account.

The virtual lab makes use of a user profile as input to personalise
the learning journey. This can be either: (i) the user profile returned
through SSO when the lab is integrated with the NEWTELP plat-
form, or (ii) a stored user profile if the lab is used as a standalone
application. The lab personalises the learning journey during which
students can be given to interact with multimedia content (video,
text and images), take practice quizzes, and perform inquiry-based
learning experiments using the interactive builders.

The virtual lab logs the learner activities as events using the
Tin Can standard. When the lab is integrated with the NEWTELP
platform through SSO, the information is logged to the NEWTELP
Learning Record Store (LRS). As opposed, when the lab is used as
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Don't worry, we'll be helping you along the way

Take a breath, and relax. Set yourself one small goal for today (for
example, aim to finish this lab) and see how you get on. We will help.
you every step of the way.

Great

Looks like you're an explorer, so this next challenge is ideal for you

Figure 1: SDL and SE quiz and feedback personalisation.
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Figure 2: Interactive atom builder.

a standalone application, the information is logged using a micro-
service logging module.

The virtual lab was implemented as a web-based application
using HTML5, CSS and Javascript for the front-end. The back-end
part of the sign-up/login and logging components make use of
technologies such as AWS API Gateway, Lambda and DynamoDB.
The interactive builders were developed using Unity and integrated
within the web application. All the content files are stored in AWS
S3 and are delivered using CloudFront.
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Figure 3: Architecture of the personalised virtual lab and in-
tegration with the NEWTELP platform.

3 PILOT STUDY
3.1 Methodology

A pilot study was conducted in order to evaluate the interactive
personalised virtual lab across learners with different SDL and SE
levels. The pilot was conducted in two secondary schools from
Ireland with 42 students (26 boys, 15 girls, 1 did not tell). This
consisted of a learning session using the virtual lab in the schools’
PC room. Pre-pilot engagement with the teachers was aimed at
informing the students about the pilot, as well as collecting consent
and assent forms. The students were asked to fill a pre-test and
post-test consisting of several multiple choice and short answer
questions, in order to assess their knowledge on atoms and isotopes
before and after interacting with the virtual lab.

3.2 Results

3.2.1 Knowledge Results. Figure 4 presents the pre and post knowl-
edge test results in terms of mean correct response rate and cor-
responding standard error bars. The students were divided in two
subgroups based on the responses to the SDL and SE questions they
answered at the beginning of the atoms and isotopes sections of the
lab (i.e., Low-SDL/SE subgroups comprise students with SDL/SE
lower than 4, while High-SDL/SE subgroups comprise students with
SDL/SE higher or equal to 4 on the 7-point scale). Two students did
not complete the post-test, so they were excluded from all analyses.
Another four students did not do the isotopes section of the virtual
lab, so they were excluded from that analysis.

Figure 4 results show that all subgroups have increased their
knowledge between pre-test and post-test in terms of average cor-
rect response rate for both atoms and isotopes sections of the virtual
lab. The paired t-test for dependent groups was used to assess if
the increases were statistically significant at « = 0.05. The results
summarized in Table 1 show that the increases were statistically
significant for all subgroups in case of the atoms section. In case
of the isotopes section, the results were statistically significant for
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Figure 4: Pre and post knowledge test results.

Table 1: Paired t-test between pre and post knowledge tests.

VL Section Subgroup t-stat df p-value

Atoms Low-SDL  5.00 5 0.0041
High-SDL  3.70 33 0.0008
Low-SE 4.69 20 0.0001
High-SE 2.63 18 0.0172
Isotopes Low-SDL  1.73 3 0.1820

High-SDL 3.74 31 0.0007
Low-SE 3.96 12 0.0019
High-SE 2.47 22 0.0216

High-SDL, Low-SE and High-SE subgroups but not for Low-SDL
subgroup that comprised only 4 students.

3.2.2  Learner Interaction Results. Two metrics were computed
based on the Tin Can events for the inquiry-based learning phase.
First is the number of incorrect attempts before the first correct
attempt at building the atom or isotope. Second is the number of in-
teractions with the atom/isotope builder relative to the complexity
of the particular atom/isotope that the student chose to build.
Figure 5 presents the results for the different subgroups based
on their SDL and SE levels. For atom builder the average num-
ber of incorrect attempts is lower for the High-SDL subgroup as
compared to the Low-SDL subgroup, as well as for the High-SE
subgroup as compared to the Low-SE subgroup. This indicates that
students with a higher level of SDL and SE have a lower number
of incorrect attempts despite doing more complex atoms. In terms
of interactions, the Low-SDL and High-SDL subgroups as well as
the Low-SE and High-SE subgroups show similar average numbers,
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Figure 5: Incorrect attempts and interactions results.

which is expected because the numbers were computed relative to
the complexity of the atoms built by different students.

For isotope builder the High-SDL subgroup presents slightly
higher average number of incorrect attempts and relative number
of interactions than Low-SDL subgroup. As opposed, the High-
SE subgroup presents slightly lower average number of incorrect
attempts and relative number of interactions than Low-SE subgroup.
For isotope builder most users did not have incorrect attempts given
that the average number is lower than 1.

4 CONCLUSIONS

Virtual labs present many benefits for students such as the ability to
practice at anytime and at their own pace. Despite much research
and development in the area, there is a lack of personalisation
features in virtual labs. This paper evaluated an interactive person-
alised virtual lab for secondary school science where students can
learn concepts and practice building atoms, isotopes and molecules.
The virtual lab personalises the learning journey based on students
self-directed learning and self-efficacy levels. The results from a
pilot in two secondary schools showed that both students with
low and high levels of SDL and SE improved their knowledge by
practising with the virtual lab. However, students with low SDL
and SE tend to have more incorrect attempts before competing the
experiment. One limitation of the study was the small number of
participants with low SDL. Future work will focus on more com-
prehensive evaluation of the impact of personalisation features on
the learning experience. Moreover, future work will investigate
automatic methods to accurately estimate student’s SDL and SE
level, as well as other metrics that can be extracted from the Tin
Can events to improve the user modelling and personalisation.
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