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aDepartment of Computer Science, Brunel University London, Kingston Lane, UB8 3PH, London, U.K.

bSchool of Computer Science and Technology, University of Bedfordshire, LU1 3JU, Luton, U.K.
cDept. of Computer Science and Creative Technologies, Univ. of the West of England, BS16 1QY, Bristol, U.K.

dDept. of Communications and Information Technology, HEIA-FR, CH-1700, Fribourg, Switzerland
eFaculty of Science and Technology, Middlesex University London, NW4 4BT, Hendon, London, U.K.

E-mails: ioan-sorin.comsa@brunel.ac.uk, sijing.zhang@beds.ac.uk, mehmet.aydin@uwe.ac.uk,
pierre.kuonen@hefr.ch, r.trestian@mdx.ac.uk, george.ghinea@brunel.ac.uk

Abstract—The problem of radio resource scheduling subject
to fairness satisfaction is very challenging even in future radio
access networks. Standard fairness criteria aim to find the best
trade-off between overall throughput maximization and user
fairness satisfaction under various types of network conditions.
However, at the Radio Resource Management (RRM) level,
the existing schedulers are rather static being unable to react
according to the momentary networking conditions so that
the user fairness measure is maximized all time. This paper
proposes a dynamic scheduler framework able to parameterize
the proportional fair scheduling rule at each Transmission Time
Interval (TTI) to improve the user fairness. To deal with the fra-
mework complexity, the parameterization decisions are appro-
ximated by using the neural networks as non-linear functions.
The actor-critic Reinforcement Learning (RL) algorithm is used
to learn the best set of non-linear functions that approximate
the best fairness parameters to be applied in each momentary
state. Simulations results reveal that the proposed framework
outperforms the existing fairness adaptation techniques as well
as other types of RL-based schedulers.

Index Terms—RRM, Resource Scheduling, Fairness Optimi-
zation, Reinforcement Learning, Neural Networks.

I. INTRODUCTION

The next generation of mobile networks (5G) brings a
sustainable support for bandwidth-hungry and delay-sensitive
applications over radio access interfaces by integrating hybrid
solutions and key technologies, such as beamforming, mas-
sive antenna arrays or millimeter wave communications [1].
The network operators are facing the challenges of accommo-
dating very high heterogeneity of applications and solutions
as well as providing more stringent Quality of Service (QoS)
requirements for their customers [2]. An important aspect
of QoS provisioning is represented by the fairness objec-
tive satisfaction when delivering the requested heterogeneous
services. On one hand, the inter-class fairness is addressed
when adopting a certain prioritization order among different
application classes according to the stringency of their QoS
requirements. On the other hand, the intra-class fairness
must be adopted for users belonging to the same application
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class to avoid the starvation of some users with unfavorable
wireless connections. To this end, smart solutions are needed
to maintain high satisfaction levels for both inter-class and
intra-class fairness under dynamic network conditions.

One possible solution that could improve the fairness sa-
tisfaction under various networking conditions is the flexible
management of radio resources [2]. A more dynamic Radio
Resource Management (RRM) will enable a smarter mobility
management, adaptive energy saving techniques and power
allocation schemes and more intelligent packet scheduling
and resource allocation algorithms [3]. A packet scheduler
aims to allocate user data packets in the frequency domain at
each Transmission Time Interval (TTI) to achieve different
QoS targets [4]. At each TTI, the scheduling process is
conducted through a scheduling rule that aims at assuring
certain fairness levels depending on the actual networking
conditions. Intelligent packet scheduler implies the possibility
of adapting these scheduling rules to the network conditions
such that the fairness satisfaction is improved [4].

We focus on the RRM scheduler for intra-class user fair-
ness satisfaction. The intra-class fairness can be addressed by
considering two aspects: a) the amount of allocated resources
and b) the users′ average throughput. For the first approach,
the classical Round-Robin scheduler aims to allocate equal
amount of radio resources to all users while ignoring the
channel and network conditions [5]. As a result, some reso-
urces may be wasted for those users with unfavorable channel
conditions. As a second option of addressing the intra-class
user fairness, the Proportional Fair (PF) is used to achieve
certain fairness level between users′ average throughput [5].
The fairness performance of PF scheduling rule strongly
depends on the channel conditions for each user, and then, an
acceptable level of fairness would be difficult to be achieved
for more general wireless conditions. In this sense, the
Generalized Proportional Fair (GPF) scheduler is proposed
as a parameterizable version of conventional PF scheduler
that can adapt to the momentary networking conditions such
that the fairness performance can be improved [4].

We propose the use of scheduling functions able to map
the network conditions into parameterization decisions for
the GPF scheduling rule at each TTI such that the user
fairness would be greatly improved. In this sense, we use
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Reinforcement Learning (RL) [6] to learn the best para-
meterization scheme of GPF scheduler on each momentary
scheduler state. Since the scheduler state space is continuous
and multi-dimensional (i.e. traffic load, channel conditions,
performance characteristics, mobility models), the fairness
adaptation problem cannot be enumerated exhaustively. Thus,
we propose the use of neural networks to approximate the best
fairness parameterization decision at each momentary state.

II. RELATED WORK

The intra-class user fairness can be evaluated by using
quantitative and qualitative measures [7]. With quantitative
evaluations, the average user throughput is used to compute
certain fairness metrics. Jain Fairness Index (JFI) is the most
well known example of quantitative measures [8]. The disa-
dvantage of quantitative measures refers to the difficulty of
setting fairness constraints globally accepted. Also, the indi-
vidual user throughput is not related to the overall distribution
of other users′ throughput. Qualitative fairness evaluation
aims to reduce these drawbacks by considering each indivi-
dual user throughput subject to certain fairness constraint. A
typical example of qualitative measure is the Next Generation
of Mobile Networks (NGMN) fairness criteria [9]. According
to NGMN fairness requirement, a system is considered fair at
each TTI only if at least (100− x)% of active users achieve
at least x% of each normalized user throughput [9]. The
scheduler is considered fair if the Cumulative Distribution
Function (CDF) of users′ normalized throughput lies on the
right side of NGMN requirement [9].

When optimizing the user fairness, a special attention
must be given to the trade-off with other QoS objectives,
such as system throughput maximization [10]. For example,
high JFI index may indicate a good fairness at the cost of
significant system throughput degradation. Also, when the
CDF curve of normalized user throughput is too far from
its NGMN requirement, the system can be over-fair and
consequently, the system throughput can be affected [4]. In
[11], different versions of PF scheduling rules are compared
for orthogonal and non-orthogonal radio access schemes with
imperfect channel state information and different trade-off
designs on network throughput and JFI fairness. In [12], di-
fferent parameterization schemes for GPF scheduling rule are
tested for non-orthogonal access networks taking into account
the joint power optimization problem and JFI fairness. In
both cases, the obtained system throughput is higher than
for orthogonal schedulers, but the proposed schedulers are
unable to adapt online based on the momentary networking
conditions, making the user fairness satisfaction questionable.

The JFI performance is measured in [13] by using the Sim-
ple Parameterization for GPF (SP-GPF) scheduling rule. The
user throughput is predicted based on the probability mass
function and consequently, the GPF parameter is adapted at
the current TTI according to the predicted JFI value in the
next TTI. The results suggest very good performance in terms
of system throughput and user fairness trade-off but at the cost
of higher system complexity. In [14], a fuzzy logic scheduler
is proposed to deal with JFI and system throughput maximi-
zation. The Q-Learning algorithm with the neural networks as

function approximations is used in [15] to achieve different
static trade-off levels between system throughput and JFI.
Imposing the fairness limit regardless the channel conditions
makes the JFI-based approaches impractical.

The adaptation of NGMN qualitative fairness measure
in OFDMA systems is considered in [16] in which the
CDF curve is adjusted at each 1s by using the dynamic
parameterization of SP-GPF scheduling rule. In [17], different
RL algorithms are used to adapt the SP-GPF scheduling
rule at each TTI based on the network conditions. The
continuous actor-critic algorithm (CACLA-1) performs the
best by increasing the number of TTIs when the system
respects the NGMN fairness requirement. The Double Pa-
rameterization of GPF (DP-GPF) is addressed in [18], in
which an actor-critic scheme with continuous action space
is used to learn the best parameterization decision at each
TTI. The actor-critic RL scheme for DP-GPF is able to
outperform the RL algorithm with simple parameterization
(CACLA-1) proposed in [17] with more than 6% of time
when the NGMN fairness is achieved. Both parameterization
algorithms proposed in [17] and [18] use the average user
throughput based on Exponential Moving Filter (EMF) to
compute the momentary CDF curve to match the NGMN
requirement at each TTI. The EMF-based observations are
used to compensate the wireless channel fluctuations rather
than to measure the fairness performance [4].

In this paper, we use the Median Moving Filter (MMF) to
compute the average user throughput that is used to evaluate
the NGMN fairness performance. The actor-critic RL scheme
is used to train the non-linear functions that map states to
parameterization decisions for the DP-GPF scheduler. Also,
the proposed framework is trained for different time window
lengths for MMF in order to determine the optimal setting
for which the NGMN fairness satisfaction is maximized.

III. SCHEDULER MODEL

We consider an OFDMA downlink transmission where
the available bandwidth is divided in equal Resource Blocks
(RBs), the minimum resource unit that can be allocated to
one user at each TTI. Let us consider B = {1, ..., B} the
set of RBs, where B is the maximum number of RBs for a
given system bandwidth. We consider an User Equipment
(UE) being characterized by homogeneous traffic. Let us
define Ut = {u1, u2, ..., uUt} the set of UEs, where Ut is
the maximum number of users at TTI t. The user set Ut is
variable since users can change their status from idle/active
and vice-versa during scheduling. For each user u ∈ Ut, Tu[t]
is the user throughput at TTI t, Tu[t] is the average user
throughput based on EMF and determined as [4]:

Tu[t] = (1− ψ) · Tu[t− 1] + ψ · Tu[t], (1)

where ψ ∈ [0, 1] is the forgetting factor. On the other hand,
the average throughput with MMF Tu[t] is determined as [4]:

Tu[t] = 1/W ·
∑W−1

x=0
Tu[t− x], (2)

where W is the moving time window used to average the
user throughput. We propose to calculate the median moving



window as a function that depends on the number of active
users Ut and the maximum number of users Umax that can
be scheduled at each TTI based on the system bandwidth:

W = [ρ · Ut/Umax], (3)

where ρ ∈ R+ is the windowing factor. We aim to find the
optimal range of ρ for generalized network conditions such
that the NGMN fairness performance is maximized.

The packet scheduler aims to allocate each RB b ∈ B to a
given active user u ∈ Ut at each TTI such that the NGMN
fairness criterion is respected. Let us define the CDF function
for each normalized user throughput such as: Υ(T̂u) : R →
[0, 1], where T̂u = Tu/

∑
u′ Tu′ is the normalized average

user throughput with MMF over the sum of all average user
throughputs. According to NGMN fairness requirement, there
is a vector of CDF values ΥR = [ΥR

1 , ...,Υ
R
U ] that has to be

respected at each TTI. The purpose of our framework is to
decide each TTI the best parameterization scheme for DP-
GPF scheduling rule such that Υ = [Υ1(T̂1), ...,ΥU (T̂U )]
respects the NGMN requirement vector ΥR[t].

We define by P = {p1, p2, ..., pP } the set of parameteriza-
tion schemes used to configure the DP-GPF scheduling rule
at each TTI. Based on the momentary networking conditions,
a given decision p ∈ P provides certain fairness performance
when considering the NGMN requirement. In this sense, we
define the utility function Θp,u,b : R → R that aims to
quantify the parameterization decision p ∈ P for user u ∈ Ut
and RB b ∈ B. Actually, this utility outputs the priority of user
u to be served on each RB b. Once the scheduling process
is completed, the NGMN fairness performance is measured
according to the new set of CDF values Υ[t + 1]. The idea
is to parameterize the utility function Θ at each TTI in order
to increase the number of TTIs when the NGMN fairness
criterion is satisfied.
A. Optimization Problem

Solving the NGMN fairness optimization problem is chal-
lenging since alongside the simple resource allocation pro-
blem, the parameterization of utility functions has to be
decided at each TTI. The proposed optimization problem is
presented as follows:

max
x,y

∑
p∈P

∑
u∈Ut

∑
b∈B

xp,u[t] · yu,b[t] ·Θp,u,b(Tu, ru,b) · ru,b[t],

s.t. (4)∑
u
yu,b[t] ≤ 1, b = 1, ..., B, (4.a)∑

p
xp,u[t] = 1, u = u1, ..., uU , (4.b)∑

u
xp∗,u[t] = Ut, p∗ ∈ P, (4.c)∑

u
xp⊗,u[t] = 0, ∀p⊗ ∈ P\{p∗}, (4.d)

xp,u[t] ∈ {0, 1}, ∀p ∈ P,∀u ∈ Ut, (4.e)
yu,b[t] ∈ {0, 1}, ∀u ∈ Ut,∀b ∈ B, (4.f)

Υu(T̂u) ≤ ΥR
u , u = u1, ..., uU , (4.g)

where ru,b is the achievable user rate obtained according
to the received Channel Quality Indicator (CQI) for each

user u and RB b. In (4), yu,b[t] is the RB allocation va-
riable (i.e. yu,b[t] = 1 if RB b is allocated to user u and
yu,b[t] = 0, otherwise) and xp,u[t] is the parameterization
decision variable (i.e. xp,u[t] = 1 if the parameters set
p ∈ P is selected to perform the scheduling for user u and
xp,u[t] = 0, otherwise). Constraints (4.a) allocate for each
RB b at most one user. Constraints (4.b) show that only one
parameterization scheme is decided for each user at each TTI.
The same parameterization scheme is used for all active users
at each TTI, statement denoted by constraints (4.c) and (4.d).
Constraints (4.e) and (4.f) make the proposed optimization
problem combinatorial. Finally, constraints (4.g) denote the
NGMN fairness requirements.

The utility function from (4) is defined as [4]:
Θp,u,b(Tu, ru,b) = rβt−1

u,b /T
αt

u , where the parameterization
decision is pt = (αt, βt) ∈ P . When p = (0, 1) keeps con-
stant for all TTIs, the optimization problem aims to maximize
the system throughput. When p = (1, 1) is set for the entire
transmission, users with the best metrics ru,b/Tu are selected
for each RB b ∈ B, and the obtained scheduling rule is PF.
The user fairness can be improved since users with lower
average throughput are preferred to be scheduled. However,
by increasing α and keeping β = 1 for the entire scheduling
session, fairer schedulers can be obtained while degrading the
system throughput. If the scheduler keeps β = 1 constant and
αt variable such as pt = (αt, 1), then the obtained scheme
is SP-GPF. When both parameters are tunable each TTI such
that pt = (αt, βt), then the scheduling rule is DP-GPF. In
this paper, we propose the use of actor-critic RL framework
to learn over time the best fairness parameters for the DP-
GPF scheduler at each TTI.

B. Proposed NGMN Fairness Requirement

Figure 1 presents a benchmark for the fairness evaluation
for a 60-user scenario equally distributed from the base
station to the edge of the cell with the radius of 1km
[18]. Figure 1.a presents the quantitative measure for the
trade-off between system throughput maximization and JFI-
based user fairness. As expected, when p = (0, 1), the
system throughput is maximized while the JFI fairness is very
poor. The PF scheduling rule (dark blue points) achieves a
certain trade-off while the maximum fairness scheduling rule
(p = (10, 1)) maximizes the JFI-based fairness measure at
the cost of strongly degrading the overall system throughput.
Trade-off values higher than those imposed by the maximum
limit (black dotted curve) cannot be obtained. As mentioned,
this quantitative evaluation (Fig. 1.a) is not able to provide
a certain fairness requirement under dynamic networking
conditions. When using the RL framework to learn the best
fairness parameters for SP-GPF in order to meet the NGMN
requirement, the obtained policy shows that the optimal
values are (α ∈ [0.4; 0.5], β = 1).

Figure 1.b shows the CDF representations of the same
schedulers and the NGMN fairness requirement. At each
TTI, the CDF values are calculated to verify the NGMN
fairness condition (black continuous and oblique line). As
shown in Fig. 1.b, the maximum throughput scheduler crosses
the NGMN fairness requirement line and then, it is considered



Fig.1 System Throughput Maximization vs. User Fairness [18]: a) Quantitative Evaluation; b) Qualitative Evaluation

unfair. The policy obtained by using reinforcement learning
is fair since the corresponding CDF values are situated on the
right side without crossing the NGMN requirement. The PF
and maximum fairness schedulers are fair but the associated
CDF curves are situated too far from the NGMN requirement.
As seen from Fig. 1.a, this fact leads to serious degradation
for the overall system throughput. The aim would be to learn
a scheduling policy able to adapt to more general networking
conditions and to have the CDF values at each TTI as close
as possible to the NGMN requirement on the right side. Then,
we need to define a maximum NGMN fairness limit for which
the scheduler can be considered optimal or feasible. We define
this maximum limit (oblique dotted line) as follows:

ΥM
u (T̂u) =

{
ΥR
u (T̂u)− ζ, if T̂u ≤ 1 + ζ,

1, if T̂u > 1 + ζ,
(5)

where the NGMN requirement function is ΥR
u (T̂u) = T̂u if

T̂u ≤ 1 and ΥR
u (T̂u) = 1, otherwise. The confidence factor

ζ ∈ [0, 1] sets the maximum limit for which the system is
considered feasible. If the CDF curve exceeds this maximum
limit on the right side, then the scheduler is considered over-
fair. We propose the actor-critic RL framework to learn taking
proper parameterization decisions, such that the CDF curves
obtained at each TTI to be located in the CDF feasible zone.

At each TTI, for each user with the normalized throughput
T̂u ≤ 1, we calculate the difference du = ΥR

u (T̂u)−Υu(T̂u).
If there is at least one user for which du < 0, then we
declare the scheduler unfair. If du ≥ 0 holds for each
user, then the system is fair. In this case, we determine the
maximum difference dmax = maxu(du). If dmax ≤ ζ, then
the scheduler is feasible; otherwise, when dmax > ζ, the
system is considered over-fair. We train our functions in order
to minimize the number of TTIs when the system is unfair.
Then, the second objective would be to decrease as much as
possible the number of TTIs when the scheduler is over-fair.

C. Controller and Scheduler Interaction

When the scheduler is situated in one of the unfair or over-
fair regions, parameters αt and βt must be adapted properly

in order to reach the feasibility zone in the CDF domain
as fast as possible. For example, as seen in Figs. 1.a and
1.b, if the scheduler is unfair, then α must increase and β
decrease to reach the fairness zone. On the other hand, when
the system is over-fair, α must decrease and β increase to
get closer to the feasibility region. The adaptation of the
parameterization scheme is achieved at each TTI based on
the following recurrence:

pt =

{
αt = αt−1 + ∆αt,

βt = βt−1 + ∆βt,
(6)

where {∆αt,∆βt} ∈ [−1, 1] are the fairness steps that need
to be decided at each TTI in order to respect the NGMN
feasibility region. The fairness parameters are decided based
on the interaction with an intelligent controller. The proposed
controller makes use of an actor-critic RL framework that is
able to learn over time the most suitable fairness steps to be
applied on each momentary scheduler state.

IV. PROPOSED RL FRAMEWORK

We propose the actor-critic RL framework to learn the non-
linear functions for different settings of parameter ρ in order
to approximate the best fairness steps {∆αt,∆βt} based on
momentary scheduler states. The proposed framework works
iteratively, such that: at each TTI t, the controller observes
a momentary state and takes an action; the scheduler makes
use of indicated fairness steps and performs the scheduling
procedure; at TTI t + 1, a new state is observed and the
reward value is determined according to the calculated CDF
values reported to the NGMN fairness requirement. Based on
the goodness of the applied action in the previous state, the
neural networks are reinforced and adapted accordingly.

A. States and Actions

We denote by s[t] ∈ S the momentary scheduler state at
TTI t, where S is the scheduler state space being considered
as multi-dimensional with variable dimension. The dimension
variability is given by the number of active users Ut that can
change from one TTI to another. Under its original form, the
scheduler momentary state can be represented as s = [su, sc],



where su[t] ∈ SU is the uncontrollable scheduler state which
is not depending on the applied fairness parameters. This sub-
state contains the CQI indicators and the number of active
users Ut. The controllable momentary state is represented by:
sc = [αt−1, βt−1,T[t],T[t], d], where T[t] = [T 1, ..., TU ],
T[t] = [T 1, ..., TU ] and d is determined as follows: if the
scheduler is unfair, then d = maxu′(du′), where u′ ∈ Ut
are those users that are crossing the NGMN requirement on
the left side; if the scheduler is fair, then d = minu(du). In
this way, the controller is aware of how far the scheduler is
from the feasible region. The dimension variability is given
by the CQI sub-state, T[t], and T[t]. Compression methods
from [4] are applied in order to get a fixed dimension for
these sub-components. However, we are referring to s[t] as
the momentary compressed scheduler state at TTI t.

The momentary controller action is defined as a[t] ∈ A,
where A is continuous and two-dimensional action space and
a[t] = [∆αt,∆βt]. Actually, the momentary controller action
a[t] represents the output of the actor neural network.

B. Reward Functions

The reward evaluates at each TTI t the performance of
applying action a[t] ∈ A in momentary state s ∈ S . The
reward is established based on how far the CDF curve is from
the NGMN feasible zone at each TTI. For our convenience,
we denote by s ∈ UF the momentary state when the
scheduler is unfair; s ∈ OF when the scheduler is over-fair
and s ∈ FS when the CDF curve lies in the feasible zone.
The proposed reward r : S×A → R is calculated as follows:

rt+1(s,a) =


ru(s,a), if s ∈ UF ,
1, if s ∈ FS,
ro(s,a), if s ∈ OF ,

(7)

where {ru, ro} are the reward functions corresponding to
unfair and over-fair regions, respectively.

When the the system is unfair, then the fairness decisions
{∆αt,∆βt} taken in the current TTI should drive the schedu-
ler to the fairness region. When βt > αt, then the trade-off
is balanced more on the throughput maximization and less
on user fairness. Consequently, βt must be decreased and αt
increased. When βt ≤ αt, then only αt should be increased in
order to reach the fairness region. When βt > αt, the reward
function associated to the unfair region is:

ru =


−1, if ∆αt ≤ 0, ∆βt ≥ 0,

−0.5 · (1 + |∆βt|), if ∆αt ≤ 0, ∆βt < 0,

−0.5 · (|∆αt|+1), if ∆αt > 0, ∆βt ≥ 0,

0.5 · (|∆αt|+|∆βt|), if ∆αt > 0, ∆βt < 0.

(8)

When αt ≥ βt, then the proposed reward function becomes:

ru =

{
∆αt, if ∆αt > 0,

−∆αt, if ∆αt ≤ 0.
(9)

When the momentary scheduler state is s[t] ∈ OF , then the
fairness parameters must be adapted in order to increase the
system throughput and decrease the JFI-based user fairness.
We define two cases: a) when αt ≥ βt, the best practice is

to decrease αt and increase βt; b) when αt < βt, we must
decrease βt until the feasibility is met. For the first case, the
reward associated to the over-fair region becomes:

ro =


−1, if ∆αt ≥ 0, ∆βt ≤ 0,

−0.5 · (1 + |∆βt|), if ∆αt ≥ 0, ∆βt > 0,

−0.5 · (|∆αt|+1), if ∆αt < 0, ∆βt ≤ 0,

0.5 · (|∆αt|+|∆βt|), if ∆αt < 0, ∆βt > 0.

(10)

For the second case when βt > αt, the associated reward is
determined based on the following formula:

ro =

{
∆βt, if ∆βt > 0,

−∆βt, if ∆βt ≤ 0.
(11)

The general idea is to learn the RL framework in such a
way that the number of punishment rewards (r < 0) and
moderate rewards (0 ≤ r < 1)) is minimized and the number
of maximum rewards (r = 1) is maximized.

C. Value and Action-Value Functions

According to the tuple {s[t],a[t], rt+1, s[t+1]} received at
each iteration, the RL framework aims to learn over time the
best fairness decisions to be applied each TTI. We propose to
use the actor-critic approach that makes use of two functions:
a) value or critic function that keeps track of the value of
the states and criticize the actions; b) action-value or actor
function that aims to learn over time the best parameters to
be applied in each state. As per original definition, the value
function V : S → R is determined as follows [19]:

V (s) = E
[∑∞

t=0
γtRt+1|s[0] = s

]
, (12)

where, Rt+1 = r(s,a); (γtRt+1; t ≥ 0) is the accumulated
reward value being averaged from state to state by the
discount factor γ ∈ [0, 1]; s[0] is considered as random such
that P(s[0] = s) > 0 holds for every s ∈ S. The action-value
function Q : S ×A → R2 considers in addition that the first
action a[0] of the whole process is randomly chosen, and then
the function becomes [19]:

Q(s,a) = E
[∑∞

t=0
γtRt+1|s[0] = s,a[0] = [∆α0,∆β0]

]
.

(13)
In order to update these functions in each state, we use the

recursions from [19] and the value function becomes:

V (s) = r(s,a) + γ · V (s′), (14)

where s′ = s[t+1]. For our convenience, we consider s′ ∈ S
the current state and s = s[t] the previous one.

D. Neural Network Approximations

Ideally, we would like to learn the optimal functions V ∗(s)
and Q∗(s,a) that can provide the best values every state. But,
both states and actions are multi-dimensional and continuous
variables. Hence, we can only learn these functions and get
over time the best approximations of optimal values. Then,
we define by V̄ ∗(s) : S → [−1; 1] the approximation of
optimal critic function and by Q̄∗(s) : S → [−1; 1]2 the
approximation for the optimal action-value function. These



functions are non-linear representations defined as follows:

V̄ ∗(s) = hv(θvt , ψ(s)),

Q̄∗(s) = ha(θat , ψ(s)),
(15)

where {hv, ha} are the neural networks for the value and
action-value functions, respectively, ψ(s) is the feature vector
and {θst , θst } are the weights′ vectors that must be learned
by the actor-critic RL algorithm in order to get the best
approximations for the optimal functions.

In general, a neural network is composed by L layers and
Nl number of nodes for each layer l ∈ {1, 2, .., L}. Layers
l− 1 and l are interconnected with weights while each node
is characterized by a non-linear transformation. Before the
learning stage takes place, the best set of parameters in terms
of (L,Nl), l = {1, 2, ..., L} must be a priori decided.

E. Continuous Actor-Critic Learning Automata (CACLA)

CACLA algorithm aims to train the neural network weights
at each TTI according to the received tuple {s,a, rt+1, s

′}.
The learning stage is conducted by reinforcing at each TTI
two errors through the critic and actor neural networks.

1) Critic Error: At each TTI, the state values
{V̄ ∗(s), V̄ ∗(s′)} are obtained based on the critic weights
that are updated so far. The critic error aims to find the
impact of the applied action a ∈ A in state s ∈ S and it is
determined according to the following formula [20]:

Ec(s, s
′) = V T (s′)− V̄ ∗(s), (16)

where V T (s′) is calculated in a way similar to (14). The critic
error is back-propagated through the neural network reversely
from the output to the input layer and the weights are updated
based on the gradient descent principle [20].

2) Actor Error: If the critic error is Ec < 0, then the
previous action is not a good choice and the actor neural
network is not updated in order to avoid taking bad decisions
in future. However, when Ec ≥ 0, the actor neural network is
updated by back-propagating the following actor error [20]:

Ea(s) = 1/2 ·
∑1

g=0

[
ag − Q̄∗g(s)

]2
, (17)

where g = {0, 1} is the output index of actor neural network
and a[t] = [ag]. The actor error is back-propagated in the
same way by using the gradient descent principle.

In the learning stage, the RL framework must decide the
strategy to follow at each TTI in terms of improvement and
exploitation. When exploiting the actor neural network, the
fairness parameters provided by the output layer are applied to
the scheduling process and a[t] = Q̄∗(s). If the improvement
step is preferred, then a random set of fairness parameters
a ∈ A is used to enhance the NGMN fairness satisfaction.
For an optimal learning, it is preferred to dynamically change
the improvement and exploitation steps according to some
probability distributions that are decided in advance [19].

V. SIMULATION RESULTS

The packet scheduler and the proposed RL framework are
implemented in RRM-Scheduler [4], a C/C++ object oriented
tool that makes use of basic functions and methods imported

from LTE-Sim simulator [21]. An infrastructure of 10 Intel(R)
4-Core(TM) machines with i7-2600 CPU at 3.40GHz, 64 bits,
8GB RAM and 120 GB HDD Western Digital storage is used
to evaluate the performance of the proposed framework. First,
the proposed actor-critic RL framework learns to approximate
the best fairness parameters in each state; and second, the
learnt functions are exploited and compared with the state-
of-the-art schedulers and other RL-based approaches.

We compare our proposed actor-critic scheme entitled
CACLA-2 (adapts both fairness parameters) with other RL
algorithms proposed in [19]. From the literature review,
we choose to compare our method with the most relevant
approaches, such as: Maximizing Throughput (MT) [13] and
Adaptive Scheduling (AS) [16]. To get a set of non-linear
functions trained based on the same input observations but
with different algorithms, we aim to use in the learning
stage the same network conditions for CACLA-2 and other
comparative RL frameworks. Also, the exploitation stage runs
all approaches with the same conditions and the obtained
results are averaged over 10 simulation runs and the STandard
Deviations (STDs) are analyzed to prove the veracity of the
proposed approach.

In order to find the optimum windowing factor ρ that can
maximize the effective time when the scheduler state s ∈ FS
is feasible, different configurations are tested in the interval
of ρ ∈ [2.0; 5.5]. Above this interval, the schedulers are not
able to assure acceptable performance. For each of these
settings, a different set of non-linear approximators is learnt
each time. The NGMN confidence factor is set to ζ = 0.05.
The number of users is varied in the range of Ut ∈ [15, 120]
in both learning and exploitation stages. Based on a priori
simulations, the optimum number for maximum schedulable
users is Umax = 10. Each active user is characterized
by homogeneous traffic with full buffer model. Once the
optimum windowing factors are determined for this traffic
type, the same values can be used for different types of traffic
for the same range of users.

The considered system bandwidth is 20MHz with a num-
ber of B = 100 disposable RBs at each TTI. The cell radius
is 1km, and we consider a cluster with 7 macro cells where
the scheduling performance is evaluated in the central cell
while other cells provide the interference levels. The user
speed is 120km/h with random direction in both learning
and exploitation stages in order to explore a high variety of
CQI distributions. On top of that, the Jakes fading model
is considered with a downlink power level of 43dBm for
each resource block. The transmissions scheme is Frequency
Division Duplex (FDD) and the CQI reports are considered
full-band, periodical and error-less. The RLC layer is modeled
by using the transmission mode without re-transmissions due
to the fact that the results are oriented more on the decisions
of fairness parameters for the first transmission.

A. Learning Stage

The duration of the learning stage is set to 3000s. Above
this period, it was noticed that the critic error Ec keeps a
constant level. When using higher numbers of layers and
hidden nodes for both neural networks, it was noticed that



Fig.2 CACLA-2 vs. other RL Candidates: a) ρ = 2.0; b) ρ = 3.0; c) ρ = 4.0; d) ρ = 4.5; e) ρ = 5.0; f) ρ = 5.5

the system complexity is higher, the RL framework learns
slower but the learnt structure is more flexible when deciding
the fairness parameters. Also, a flexible structure presents
higher risk of over-fitting the input data in the sense that, the
learnt function represents very well the scheduler state but
also the noisy data that can be inferred due to radio channel
errors or when switching the number of active users. When
using lower configurations in terms of numbers of hidden
layers and hidden nodes (L,Nl), the framework can learn
faster and the system complexity is lower but the learning
performance is poorer since the learnt non-linear functions
may not represent very well the entire scheduler state space,
process entitled under-fitting. In both under-fitting and over-
fitting cases, the critic error starts to increase at a certain
point in the learning stage. According to a priori simulations,
it is found that a configuration of (L = 3, N = 60) is
enough to represent the scheduler state for NGMN fairness
criterion while avoiding the under-fitting and over-fitting. The
activation functions for the nodes of input and output layers
are linear. We use tangent hyperbolic representation for the
nodes belonging to the hidden layer.

B. Exploitation Stage

For each of the considered scheduling schemes, we monitor
the duration in the exploitation stage when the scheduler
state is unfair (s ∈ UF), feasible (s ∈ FS), and over-
fair (s ∈ OF). Let us denote by p(s ∈ UF) the mean
value of the percentage of TTIs from the exploitation stage
when the scheduler is unfair. By p(s ∈ OF) we denote the
mean percentage of TTIs when the system is over-fair and
p(s ∈ FS) when the scheduler CDF function is located in
the feasible zone of the NGMN fairness requirement. For each
mean values, we highlight the outliers in terms of standard
deviations to test the stability of the learnt functions.

Figure 2 compares the actor non-linear function learnt
by using CACLA-2 algorithm with other functions trained

by RL algorithms applied in scheduling decision problems.
RL algorithms such as QV2, QVMAX2 and ACLA [19]
make use of predefined fairness steps {∆αt,∆βt} and the
actions of these RL frameworks are discrete. CACLA-1
[17] parameterizes the SP-GPF scheduling rule for which
β = 1 is static over the entire scheduling session and αt is
adapted based on continuous ∆αt steps at each TTI. When
ρ = 2.0 (Fig. 2.a), QVMAX2 provides the best performance
when measuring p(s ∈ FS) and p(s ∈ UF). CACLA-
2 and CACLA-1 provide the best results in terms of the
mean percentage of TTIs when the scheduler is unfair for
ρ ∈ {3.0, 4.0} (Figs. 2.b and 2.c). When ρ = 4.5 (Fig.
2.d), ACLA and CACLA-2 perform the best when measuring
p(s ∈ FS) and p(s ∈ UF). By increasing the windowing
factor to ρ = 5.0, CACLA-2 provides the highest amount of
TTIs when the scheduler stays feasible while minimizing the
number of TTIs when the unfair zones are detected. However,
for larger time windows, such as ρ = 5.5 (Fig. 2.f), the
stability of the RL-based schedulers is strongly affected, as
indicated by the increasing STD values.

In Fig. 3, the proposed CACLA-2 framework is compared
to other state-of-the-art approaches such as MT and AS
adaptation schemes. It can be observed that for the entire
domain of ρ ∈ [2.0, 5.5], the proposed framework outper-
forms the other candidates when considering p(s ∈ UF) and
p(s ∈ FS) as performance measures. When compared to AS
scheme, maximum gains higher than 10% can be obtained
when monitoring p(s ∈ FS) (ρ = 5.0) and higher than 60%
when measuring p(s ∈ UF) (ρ = 5.0). When compared to
MT adaptation scheme, the gains are much higher, such as:
for example, when ρ = 2.5, gains higher than 30% when
p(s ∈ FS) and gains of about 32% when p(s ∈ UF).
For low time windows (ρ ≤ 2.0), the performance of all
adaptation techniques is affected due to high dynamics of
channel conditions. For large windowing factors (ρ ≥ 5.5),
the NGMN fairness criterion is more difficult to be respected



Fig.3 System Performance of the Proposed CACLA-2 Framework and State-of-the-Art Schedulers

since the impact of the parameterization decisions cannot
be sensed immediately. To conclude, the optimal windowing
factor must be chosen from ρ ∈ (2.0; 5.5) for which CACLA-
2 shows the best performance when the NGMN fairness
requirement is considered.

VI. CONCLUSIONS

This paper proposes a dynamic scheduling framework able
to adapt to the changeable networking conditions in order to
maximize the satisfaction of NGMN fairness requirement. To
deal with the framework complexity, neural networks are used
to map the momentary scheduler states into parameterization
decisions for the DP-GPF scheduler. The weights of neural
networks are trained by using the continuous actor-critic RL
algorithm with two-dimensional action space. The simulation
results show the efficiency of the proposed actor-critic scheme
when compared to other RL algorithms. When compared
to other state-of-the-art adaptive schedulers, the proposed
approach significantly increases the time when the scheduler
is feasible for a larger range of windowing factors.
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