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ABSTRACT  
The user experience constitutes an important quality metric when delivering high-definition video 
services in wireless networks. Failing to provide these services within requested data rates, the user 
perceived quality is strongly degraded. On the radio interface, the packet scheduler is the key entity 
designed to satisfy the users’ data rates requirements. In this chapter, a novel scheduler is proposed to 
guarantee the bit rate requirements for different types of services. However, the existing scheduling 
schemes satisfy the user rate requirements only at some extent because of their inflexibility to adapt for a 
variety of traffic and network conditions. In this sense, we propose an innovative framework able to select 
each time the most appropriate scheduling scheme. This framework makes use of Reinforcement Learning 
and neural network approximations to learn over time the scheduler type to be applied on each 
momentary state. The simulation results show the effectiveness of the proposed techniques for a variety of 
data rates’ requirements and network conditions. 
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1. INTRODUCTION 

The accelerated acquisition of powerful mobile devices is significantly contributing to the growing 
market of immersive multimedia applications. According to Cisco (2017), it is envisioned that by 2012 
more than 80% of total mobile data will be represented by video traffic at different data rate requirements. 
In this context, the end-user Quality of Experience (QoE) will make the difference between network 
operators while providing these pretentious services (Trestian, Comsa, and Tuysuz, 2018). According to 
Ghinea, Timmerer, Lin, and Gulliver (2014), the concept of Multiple Sensorial Media (Mulsemedia) can 



enhance the user perceived QoE when experiencing poor video quality by incorporating additional senses 
such as: olfaction, wind, haptic, etc. But the real factor that impacts the video quality degradation is 
denoted by the QoS provisioning schemes on the wireless interface that can differ from one operator to 
another. By providing higher video rates than the requested limit, the rate of packet drops is increased in 
order to keep the normal functionality of video decoders. On the other side, lower data rates for video 
services will increase the packet delays which have as a consequence a larger number of lost packets at 
the radio interface. Thus, guaranteeing certain data rates for video traffic is crucial in order to avoid the 
degradation of user perceived quality. 
 
In 5th Generation (5G) of mobile communications standard, guaranteeing certain bit rate requirements is 
even stricter since the new bandwidth hungry applications (i.e. high definition video, virtual reality 
traffic) are generated (Elbamby, Perfecto, Bennis, and Doppler, 2018). This puts a significant pressure on 
Radio Resource Management (RRM) to provide these immersive services with very stringent QoS in 
multi-user scenarios (Li et al. 2017). Alongside of other RRM functions, the packet scheduler is in charge 
of allocating user data packets in frequency domain at each predefined Transmission Time Intervals 
(TTIs). According to Comşa (2014a), the scheduling process is conducted based on the scheduling rules 
aiming to maximize the satisfaction of particular QoS requirements. In literature, several scheduling rules 
are proposed to deal with the Guaranteed Bit Rate (GBR) objective. For example the scheduling rule 
proposed by Lundevall et al. (2004) is designed to work for WCDMA access networks and very low data 
rates of video services. Andrews,  Qian, and Stolyar (2005) propose a scheduler for CDMA downlink 
networks in which a maximum number of 40 users are scheduled with the maximum rate of 160kbps. In 
the same type of access networks, the scheduler proposed by Kolding (2006) outperforms other GBR 
oriented schedulers for the considered networking scenarios. However, the proposed schedulers work 
appropriate only for particular scheduler states in terms of: access technologies, user rates, channel 
conditions, traffic load, etc. On one hand, these scheduling techniques must be upgraded for the novel 
access technologies imposed by 5G standard. On the other hand, the aim would be to use each of these 
scheduling rules on the best matching scheduler state in order to maximize over time the satisfaction of 
user rate requirements for various traffic types. 
 
The proposed scheduling optimization problem must determine at each TTI the radio resources to be 
selected for active users as well as the most convenient scheduling rule to be followed in order to get the 
maximum possible GBR satisfaction outcome according to the scheduler momentary states. According to 
the selected scheduling rule, the resource allocation performs the frequency prioritization by favoring 
those users with poorer GBR satisfaction profile. If this frequency prioritization can be easily computed 
each TTI by simply calculating given scheduling metric for each user and radio resource, the scheduling 
rule selection must be a priori decided based on the momentary scheduler states. The idea is learn over 
time some preference values by applying random scheduling rules in many visits of scheduler states. But 
for the GBR-based maximization problem, this solution is unfeasible since the scheduler state space is 
continuous and multidimensional and hence, action-state values cannot be enumerated exhaustively. 
Thus, the only way is only to approximate the best scheduling rule selection on each scheduler state. The 
aim is to learn these approximations in such a way that eventually, these solutions of the scheduling 
optimization problem would converge to optimal solutions. These approximations are represented by non-
linear functions or neural networks whose weights are refined and adapted each TTI according to the 
selected scheduling rule. According to Van Hasselt (2011), the Reinforcement Learning (RL) principles 
and algorithms can be used to update these non-linear functions by reinforcing for each action function 
the corresponding time-based error. 
 
This chapter proposes an innovative scheduler framework that aims to improve the user QoE of video 
services by maximizing the satisfaction of users’ rates requirements under three different traffic type 
scenarios, such as: full buffer, Constant Bit Rate (CBR) and Variable Bit Rate (VBR). A new scheduling 
rule is proposed to maximize the satisfaction of GBR requirements. Then, the proposed scheduling 



framework makes use of RL algorithms to learn over time the policy of scheduling rules to be applied on 
each state. We study the impact of five actor-critic RL algorithms on the aforementioned traffic types 
with various channel and networking conditions. The scheduling process is conducted in Orthogonal 
Frequency Division Multiple Access (OFDMA) downlink systems. OFDMA is one of the access scheme 
candidates in 5G radio networks as proposed by FANTASTIG-5G (2016) European project. 
 

2. RELATED WORK 

The user QoE degradation of multimedia applications can be partially masked by introducing the 
mulsemedia services as stated by Yuan, Chen, Ghinea and Muntean (2014). According to Ghinea  and 
Ademoye (2012), by adding olfaction sensorial components to the conventional video content, the user 
perceived experienced can be strongly improved if the perceived olfactory synchronization (Ademoye and 
Ghinea, 2009) is considered. Also, for some particular video content enhanced with olfaction sensory 
effects, the audio stream can be masked as suggested by Ademoye, Murray, and Ghinea (2016). An 
adaptation technique for the mulsemedia content based on the available bandwidth is proposed by Yuan, 
Ghinea and Muntean (2015). Comşa, Trestian and Ghinea (2018a) propose the concept of 360˚ 
mulsemedia in which, the QoE degradation of 360˚ video content due to fast head movements or poor 
network conditions can be masked if additional 360˚ sensory objects (i.e. wind, olfaction, heat) are 
perfectly mapped with the conventional content in both spatial and temporal domains. In order to satisfy 
the stringent QoS requirements of bandwidth-hungry 360˚ mulsemedia applications in multi-user 
scenario, a novel 5G scheduler framework is proposed by Comşa et al. (2018a) that makes use of the 
reinforcement learning. 
 
To maximize the QoS satisfaction and implicitly the QoE provisioning of real time applications, 
Reinforcement Learning is used to learn over time the most convenient scheduling rule on each 
momentary state (as initially proposed by Comşa, Aydin, Zhang, Kuonen, and Wagen, 2011; Comşa, 
Aydin, Zhang, Kuonen, and Wagen, 2012). The exploited scheduling rules are focusing on satisfying 
various objectives, such as: user fairness satisfaction, GBR, delay and packet loss rates. The 
parameterization of Proportional Fair (PF) scheduling rule is used to attain dynamic trade-off between 
system throughput maximization and user fairness satisfaction according to the network conditions 
(Comşa, Zhang, Aydin, Kuonen, and Wagen, 2012; Comşa et al., 2014b, Comşa et al., 2014c). Neural 
networks are used to approximate the best parameterizations of Generalized PF (GPF) scheduling rule at 
each momentary state. Comşa et al. (2014b) use actor-critic RL algorithms to perform the simple 
parameterization of GPF rule. Various RL algorithms are used to update the weights of neural networks: 
some RL algorithms use fixed and discrete steps for GPF simple parameterization and update the neural 
networks for each step; another RL algorithm entitled continuous actor-critic RL algorithm makes use of 
only one neural network to output the continuous values that parameterize GPF rule at each TTI. When 
comparing with other state-of-the-art approaches, the learnt functions with these RL algorithms show 
gains higher than 10% when matching the user rates against the fairness satisfaction criterion. Moreover, 
Comşa et al. (2014c) use the same continuous actor-critic RL scheme for the double parameterization of 
the GPF scheduling rule by adapting the neural network that provides two continuous values at each TTI. 
The results indicate a gain larger than 5% when compared to actor-critic RL framework that uses the 
simple parameterization. Also, the double parameterization framework reveals a much higher capacity of 
recovering from unfeasible state space regions where the user fairness criterion is not satisfied. 
 
Scheduling frameworks that use RL algorithms are also exploited to optimize the QoS objectives 
concomitantly. For instance, Comşa, De Domenico, and Ktenas (2017) proposes a 5G scheduler able to 
optimize the satisfaction of GBR, PLR and delay requirements at the same time for different types of 
traffic classes. The proposed actor-critic RL framework use a pool of three scheduling rule, each of them 
being oriented on one of the aforementioned particular objectives. When compared with simple 



scheduling rules, the proposed RL framework shows gains higher than 10% for different traffic types by 
monitoring the time when all users are satisfied from the viewpoint of all three objectives. In another 
work, Comşa, Trestian and Ghinea (2018b) optimize the satisfaction of both packet loss and delay 
objectives by using various RL algorithms. Different settings for the time windows are considered when 
computing the online packet loss rates for each user. Larger time windows may involve higher packet loss 
rates while shorter ones will decrease the probability of losing more data packets. Under various network 
conditions and time window settings, the learnt scheduling policies are able to outperform the standard 
scheduling rules when monitoring the number of TTIs with satisfied users from the viewpoint of packet 
loss and delay requirements.  
 
This chapter considers the satisfaction of GBR requirements for different types of applications for 
downlink OFDMA scheduling. A variety of RL algorithms is considered to learn the best policy of 
scheduling rule for different settings of time windows that are used to compute the average user rates. 
Each RL consider a neural network for each scheduling rule from the pool. We aim to learn over time the 
best set of non-linear functions that can provide the selection of the best scheduling rule in each 
momentary state. The rest of this chapter is organized as follows: Section 3 presents the scheduling 
system model; Section 4 details the proposed RL framework with neural network approximations; Section 
5 presents the simulation results for different traffic classes and network settings. Finally, Section 6 
concludes this chapter. 
 

3. GBR BASED SCHEDULING MODEL 

In this chapter we consider OFDMA downlink scheduling in which the available bandwidth is divided in 
equal Resource Blocks (RBs) at each TTI t. A RB is the smallest resource unit that can be allocated to one 
user based on the scheduling procedure. Then, we define by  1 2, ,...,B the set of RBs corresponding 
to a given system bandwidth where B  is the maximum number of RBs. Also, we define the User 
Equipment (UE) being defined by homogeneous traffic such as: full buffer, CBR and VBR. We denote by 

 1 2t t, ,...,I the set of active users at TTI t where tI  is the maximum number of users. The set of 
active users t  is time dependent since the total number of users tI  may change from one TTI to another.  
 
The main role of the packet scheduler is to allocate each RB j  to user ti   such that the satisfaction 
of GBR requirements is maximized. We define by iT  the GBR requirement for the average throughput of 

user ti   characterized by a given traffic type. The GBR objective is satisfied for user ti   at TTI t 
only if the average user throughput is greater than the GBR requirement iT . According to Comşa (2014a), 

the average user throughput can be calculated by using two types of filters, Exponential Moving Filter 
(EMF) and Median Moving Filter (MMF): 

 EMF based average user throughput : we define by  iT t  the average user throughput of user 

ti   and calculated according to: 

                                                      1 1i i iT t T t T t                                                         (1) 
where   is the forgetting factor. When  takes low values, then the impact of new value 
throughput  iT t  is very low when computing its average value. On the other side, when   
increases, then high oscillations are introduced when the scheduling performance is analyzed. 

 MMF based average user throughput: the instantaneous user throughputs are stored for a given 

time window W . Then the computation of average user throughput  iT t  is determined each 
TTI according to the following formula: 
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When the time window W  is high, the average user throughput is calculated based on the large 
number of instantaneous throughputs. In this case, the convergence of average user throughput 

 iT t  to its requirement iT  may take longer time to be achieved and the RRM outcome in terms 

of GBR satisfaction depends on very large number of observations. For very restrictive lengths of 
time windows, only some previous instantaneous throughputs are considered and then, the 
process can get significant oscillations and the RRM outcome in terms of GBR satisfaction is 
noisy. For this reasons, W  must be carefully chosen in order to quantify best the scheduling rule 
applied on each state. In this sense, we propose to calculate the median moving window W  as a 
function that depends on the number of active users tI  and the maximum number of schedulable 
users maxI  such as: 
                                                              maxtW I I                                                               (3) 
where maxI  represents the maximum number of users that can be scheduled at each TTI based on 

the signaling overhead constraints and system bandwidth and    is the windowing factor. 
 
According to some studies conducted by Comşa (2014a), the average user rates  iT t  computed based on 
the exponential filter are used to compensate the channel fluctuations in OFDMA downlink scheduling, 
whereas the MMF based average user throughputs are used to measure the impact of each applied 
scheduling rule from the perspective of GBR objective. Thus, the setting of the windowing factor   
plays a crucial role. When   is large, the probability of satisfying the GBR objective for each user 
increases since this performance is measured on the long term purpose by improving the system 
throughput and degrading the user fairness. But the long term GBR satisfaction does not guarantee the 
required amount of data in the short term downlink scheduling. Therefore, one purpose of this chapter is 
to find the optimal windowing factor which can permit to deliver the requested data rate on a short term 
purpose. 
 
Let us define   1 2, ,..., It T T T    

T  the momentary average throughput vector calculated based on MMF 

filter and 1 2, ,..., IT T T   T  the corresponding vector of GBR requirements. It is said that, the GBR 

objective is satisfied if the instantaneous vector  tT  satisfies the requirement vector for all active users. 

Furthermore, let us define  1,2,...,D�  the set of scheduling rules oriented on GBR objective. At each 
TTI, each scheduling rule d  �impacts differently in the GBR satisfaction of the average throughput 

vector  tT . The aim is to apply at each momentary scheduler state the best scheduling rule *d � in 

order to maximize the number of TTIs when the vector  tT  satisfies the requirement vector T . If the 
overall GBR satisfaction is not possible due to certain network conditions (i.e. poor channel conditions, 

high number of users), the aim would be to maximize the percentage of user throughputs from  tT  that 
respects their GBR requirements from T . 
 
The scheduler should be aware about the benefit of allocating each RB j to UE ti   from the 
viewpoint of the GBR objective. This cost value is determined for each user by a concave and monotone 



utility function, defined as: iU  : ,      i i ii iU T F T G T  , where iF  is  a function that depends 

on the average user rate calculated with exponential moving filter in order to compensate the channel 

oscillations and  iG T  is the utility weight function designed to take as input the average user rate iT  

and output the priority of user ti   to be scheduled on a given RB at TTI t. In fact, a scheduling rule 
defines the type of utility function with the condition that the same utility is assigned for all active users 
within one TTI. Then, the utility function of user ti   can be defined as:      , ,i i id i i d iU T F T G T   in 

which we keep the same function iF  for all scheduling rules while the weight function ,d iG  depends on 
the selected scheduling rule d  � at each TTI. 
 
 

3.1 Optimization Problem 

By using the Taylor’s expansion (Comşa, 2014a), the proposed short-term optimization problem aims to 
allocate the radio resources as well as to decide the scheduling rule to be applied at each TTI, such as: 
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where, the optimization problem uses the first derivative of utility function      ' '
, ,i i id i i d iU T F T G T  . 

The function iF  must be chosen to attenuate the channel variations such as:    logi iiF T T , and then, 

 ' 1i iiF T T . In (4),  i , jr t  is the achievable rate of user ti   for RB j  at TTI t, being calculated 

as     0 001bits
i , j i , jr t N t .  (Comsa, 2014a), where  bits

i , jN t  is the maximum number of bits that can be 

transmitted if RB j  would be allocated to user ti  . Basically,  bits
i , jN t  is determined based on the 

Channel Quality Indicator (CQI) which is transmitted by each UE to the base station at certain number of 
TTIs. However, if     1'

i , j i ir t F x , then the optimization problem is focused more on the GBR 

objective since those users with higher values of  , id iG T  are preferred to be scheduled. Also, if 

 , 1id iG T  , then the optimization problem is focused more on scheduling those users with higher 

   '
ii , j ir t F T  values, and thus, the fairness objective is addressed.   

 



The optimization problem from (4) is non-linear programming model and the set of constraints is convex. 
In the optimization problem,    0 1d ,ib t ,  is the scheduling rule assignation variable:   1d ,ib t   when 

scheduling rule d  � is assigned to user ti   and   0d ,ib t  , otherwise. The time-based RB allocation 

variable is   1i , jc t   when the RB j  is allocated to user ti  , and   0i , jc t  , otherwise. Constraints 

(a) denote that the only one scheduling rule or utility function can be associated for each user  ti  . The 
selected scheduling rule d � must be same for each user ti  , fact which is denoted by constraints 
(b) and (c). Constraints (d), allocates at most one user (if the corresponding data queues are not empty) 
per each RB j . Moreover, constraints (e) and (f) make the problem combinatorial. If the type of 
utility function is a priori decided, then the allocation metric becomes: 

                                                                 
t

i ij d ,i i , j
i

m t arg max G T r t T


 


                                              (5)
 

where  jm t  indicates that RB j  is allocated to user tm ,  m i   at TTI t. In this case, 

  1m, jc t   and the rest of variables are   0i , jc t  ,   tm,i ,   i m  . The same computation (5) is 

repeated for each RB until the entire spectrum is allocated. Once the resource allocation is performed, 
then the Modulation and Coding Scheme (MCS) is determined for each allocated user according to their 
CQIs. Also, the Transport Block (TB) is calculated in order to define the number of bits to be sent to each 
allocated user. 
 

3.2 Conventional Utility Functions 

According to (5), the performance of the scheduling process depends on the exploited rule d  �that 
assigns the unique weight function d ,iG . In literature, three scheduling rules are proposed to optimize the 
GBR objective, such as: 

 Barier Function (BF) ( 1d  ): proposed by Lundevall et al. (2004) with the utility weight defined 
as follows: 

                                                    1 1 21i i,i iG T exp T T                                                    (6) 

where 1  and 2 are BF parameters. Basically, if user ti   has its average throughput iT  much 
below of its GBR requirement, then the allocation probability on RB j  increases 
exponentially as defined by (6). 

 Minimum/Maximum (mM) ( 2d  ): proposed by Andrews et al. (2005) stores an additional token 
counter for each user and the weight function is defined as follows: 
                                      2 3i,i iG T exp TC t  ,     0 1i i i iTC t max ,TC t T T                   (7) 

where 3 is the corresponding parameter and  1 0iiT T W ,x    is the instantaneous user 
throughput. Actually, mM rule introduces a timer when defining the weight function in the sense 
that, if the user instantaneous throughput is higher than its requirement, then that user can be still 
scheduled for certain period until the cooldown period starts and   0iTC t  . 

 Required Activity Detection (RAD) ( 3d  ): Kolding (2006) proposes a simple weight function 
defined as: 



                                                                3 i,i i iG T T T                                                               (8) 

where, the user with the lowest average rate compared to its requirement has the greatest chance 
to be scheduled on that resource block. 

 
Studies conducted by Comsa (2014) reveal different behavior of these scheduling rules when the network 
conditions are variable in terms of: downlink channel type, number of active users, arrival bit rates and 
GBR requirements. 
 

3.3 Proposed Utility Function 

The scheduling rule proposed in this section is entitled Lagrange Multiplier (LM) since the proposed 
weight function take into account the following multiplier  i t  which is determined according to the 
following equation: 
                                                                      41i i i it t T t T t                                                   (9) 

where 4  is the forgetting factor which corresponds to the Lagrange multiplier computation for the GBR 

objective and  1 0iiT T W ,x    is the instantaneous user throughput at TTI t. Then, the proposed 
weight function is: 
                                                                        4 5i,i iG T log                                                           (10) 

By setting proper values for 5 , the user with the lowest multiplier has much less chances to be scheduled 
for the upcoming scheduling instants, whereas users with higher multipliers are much likely to be served 
by using the logarithmic scale. Even when users are experiencing very high fading oscillations

    1'
ii , j ir t F T  , the optimization problem can be still focused on the GBR requirement satisfaction 

due to the logarithmic form of the weight function. 
 

4. REINFORCEMENT LEARNING FRAMEWORK 

The solution to the optimization problem exposed in (4) aims to find at each TTI t, the best rule 
assignation and resource allocation variables       0 1d ,i i , jb t ,c t ,  such that the GBR satisfaction 

condition i iT T  is met for each active user ti  . To decide jointly both decision variables would be 

practically impossible since the overall problem is combinatorial and each solution must be provided 
within one TTI. In order to implement the proposed optimization framework in real-time schedulers, we 
propose a sub-optimal solution that can be defined as follows: in the first stage, the scheduling rule 
assignation variable must be decided whereas, in the second stage, the resource allocation can be 
performed according to the metrics’ calculation provided in (5). In this sense, we propose a reinforcement 
learning framework able to learn over time the most appropriate scheduling rule to be applied on each 
scheduler state.  
 
Figure 1 presents the proposed RL framework, where an intelligent controller learns to take proper 
scheduling decisions based on the momentary scheduler states. By   we define the measurable, 
continuous and multi-dimensional scheduler state space, and  t s  is a vector that defines the 
momentary scheduler state at TTI t. The OFDMA packet scheduler (Fig. 1, right side) takes as input at 
each TTI two types of information: a) the momentary state s  and b) the utility function decided by 
the controller. Then, the utility weights are determined based on one of the equations (6)-(10) followed by 



 

Figure 1 Proposed System Model 
 
the metrics calculations and resource allocations that are performed according to (5). In contrast to the 
packet scheduler, the controller behaves as a black box that needs to decide the rules to be followed by the 
entire scheduling procedure based only on the momentary scheduler states. 
 
At TTI t, the scheduler controller observes the momentary state  t s  and takes a decision regarding 

the type of scheduling rule that must be used by the scheduler. At TTI t+1, a new state  1t '  s s  is 
observed and a reward value is obtained from the RRM entity in order to evaluate the performance of the 
applied scheduling rule in the previous state  t s . Here, the reward value gives a general measure for 
the GBR satisfaction including all active users. The controller needs to experience high number of states’ 
transitions in order to learn over time which is the best scheduling rule to be applied on each momentary 
state. This is basically the way how the RL principle works (Sutton and Barto, 2017): for many visits of 
the state-action pairs, the reward values are stored and discounted; then, the controller just follows the 
action that has the highest accumulated reward on that state. Due to the actual circumstances of the 
scheduler state space (continuous and multi-dimensional), the state-action values cannot be enumerated 
exhaustively. In this sense, we propose to learn only the approximation of the best scheduling rule to be 
applied on each momentary scheduler state.  
 
According to Figure 1, the dimension of scheduler state space has to be reduced to a fixed dimension in 
order to enhance the learning performance and reduce the framework complexity. Then, we propose the 
use of neural networks to approximate the scheduling rule decision for each momentary state. A given 
neural network takes as input the momentary scheduler state and outputs the preference value of selecting 
its corresponding rule on that state. The previous state, action, reward and current state are stored in the 
Markov Decision Process (MDP) at every iteration. For each GBR oriented scheduling rule, we use one 
neural network for its approximation. According to the selected rule in the previous state, the 
corresponding neural network is updated in the next state once the reward value is given. The neural 
network weights corresponding to the selected scheduling rule are updated according to the information 
provided by the MDP entity and the type of RL algorithm which is used. This stage when the neural 
networks are updated is entitled learning. During the learning stage, the action selection block may 
choose to improve or to exploit what the neural networks have learnt so far. If the exploitation step is 
chosen, then the rule with the highest neural network output is selected to perform the scheduling 
procedure. If the improvement step is decided, then a different scheduling rule may be selected according 
to some probabilities. The action selection has the role of enhancing the learning outcome by enlarging 
the state space exploration. The learning stage continues until some convergence criteria are met. When 
the exploitation stage is performed, only the scheduling rule with the highest neural network output is 
selected on each momentary state.  



4.1 State Space 

The scheduler state space is divided in two disjoint sub-spaces: a) controllable sub-space C  that evolves 
based on the selected scheduling rules and b) uncontrollable sub-space U which is rather stochastic and it 
cannot be predicted in general. Then, the obtained scheduler state space is U C    . We define by 

  Ct c   the momentary controllable state and by   Ut z the momentary uncontrollable state at TTI t. 
Consequently, the momentary scheduler state is defined as:    ,t t    s = c z . By momentary 
uncontrollable state we mean the CQI reports from all users and the arrival rates in data queues. To 
improve the learning performance, the vector of GBR requirements      1 2, ,..., IT t T t T t   T  is 

randomly changed at different time periods. The number of active user is dynamically changed in the 
learning stage in order to increase the generality of the neural network approximations. Then, these 
parameters are also included in the uncontrollable scheduler state. The controllable state comprises the 
following elements: , , ,    

c T T q , where      1 2, ,..., IT t T t T t   T  is the instantaneous vector with 

average user rates calculated based on the EMF filter,      1 2, ,..., IT t T t T t    
T  is the vector of average 

user rates determined based on the MMF filter,      1 2, ,..., IT t T t T t   T , and      1 2, ,..., It t t        

is the vector of differences between user rates and GBR requirements calculated for each use with the 
following formula:     max 0,i i iT t T t   . Finally,      1 2 ,..., It t t   q q ,q q  is the vector with queue 

lengths for each active user. We consider for this study, that each active user has one active data queue. 
 

4.2 Action Space 

It is defined by  1 2, ,..., Da a a�  the finite set of controller actions. If the selected action at TTI t is

 a t d , then the scheduling rule d  is selected to conduct the scheduling procedure on that TTI. 

4.3 Reward Function 

In the reward computation, the average user throughput with MMF filter is considered only for each 
active user. From the user perspective, the reward is calculated as a normalized value of the difference 
between the average user throughput with MMF and its GBR requirement as expressed by the following 
equation: 
                                                               1, ,i i i i i tr T t T t T t T t i                                               (11) 

If the reward is   1, 0i ir T t  , then user ti   is considered to be satisfied from the viewpoint of the GBR 

constraint. For reasons related more to the convergence of neural networks, the reward function for each 
active user is modeled by using the following equation: 

                                                   
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                                                 (12) 

The intrinsic scheduler reward value is obtained by summing the rewards from (12) at each TTI such that: 

                                                                3, 2,1
tI

i i ii
r t r T t


T                                                            (13) 



The proposed reward function evaluates the performance of applying action  a t  in state  t s  . 

The reward value for pair  as,  is received in state  1t  s'  . It would be interesting to measure if 

there is any improvement of the intrinsic reward value   3, 1ir t T  received at TTI t+1 compared to the 

previous intrinsic reward value   3,ir tT  at TTI t. If we further consider now that  1t  s'   is the 

current state and  t s   is the previous one, then the global reward function is calculated as follows: 

                                          
  
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When the reward is 1r  , then the reward is maximized and all active users satisfy the GBR requirements. 
On the other side, when 0r  , then the reward is moderate and the scheduling rule applied in the 
previous state was a good action. However, when 0r  , then the controller gets a punishment and the 
applied action may not be a good option. For instance, in some networking conditions (when the traffic 
load is high and stringent GBR requirements) whatever the applied rule is, the reward is still negative. 
This makes part of noisy data which cannot be avoided when running real time RL frameworks. However, 
the scheduling rule that provides the minimum punishment value should be selected. The commitment of 
the proposed solution is to maximize the number of TTIs when the reward is maximized and minimize as 
much as possible the amount of punishment rewards. 
 

4.4 Value Functions 

The action selection block from Figure 1 implements the scheduling policy that maps momentary states 
over the action space. In learning stage, the scheduling policy is determined according to some probability 
functions in order to enhance the exploration capability of RL framework. In the exploitation stage, the 
output values provided by each neural network are used as distributions to rank the best scheduling rule to 
be applied every state. However, the scheduling policy is defined as a function  0,1  :   and 
determined based on the following formula (Sutton and Barto, 2017): 
                                                                  d a t d t   |s |s s                                                     (15) 

where    is the probability of selecting action  a t d  by   when the actual state is  t s s .  
 
The interest would be to measure the value of the initial state from where the whole learning stage starts. 
This means that we need a sum of discounted rewards from state to state starting from, let us say, 
 0 s s  when given the policy  . By using notations from machine learning domain, this measurement 

is obtained by the value function defined as V  :  and calculated as expressed below (Sutton and 
Barto, 2017): 

                                                          10
0t

tt
V R

 


    s |s s                                                  (16) 

where  1; 0t
tR t    is the accumulated reward value from state to state being discounted by the 

 0,1   and  0s  is considered a random state such that   0 0 s s . If we also assume that the 

first action of the learning process is randomly chosen and   0 0a d   keeps valid for all scheduling 

rules d , then we get the action-value function Q   :     determined as follows (Sutton and 
Barto, 2017): 



                                                      10
0 0t

tt
Q d R a d

 


     s, |s s,                                    (17) 

and the rest of scheduling rules that follows state  0 s s  are chosen according to policy  . 
  
The purpose is to be able to access the value of these functions in between consecutive states in order to 
update them based on the received rewards. According to Comşa et al. (2018b), the following recursions 
are obtained for equations (16) and (17), respectively: 

                                                             1V r t t V    s T ,T s'                                         (18.a) 

                                                           1Q d r t t V    s, T ,T s'                                      (18.b) 

 
The target of the proposed RL framework is to train the neural networks in order to obtain near-optimal 
value and action-value functions. However, the value function  V  s  is optimal when the values 

provided in each state have the highest expectable return such as    maxV V 


 s s . Similarly, the 

optimal action-value function  *Q ds,  is the highest expected return when the scheduling process starts 
from s   and the applied scheduling rule is d . When both functions are optimal, then the policy 
itself is optimal and the scheduling rule to be applied in momentary state s   can be extracted by using 
the following formula: 

                                                                   *
'arg max 'dd d |s                                                        (19) 

According to the optimality conditions, the equations expressed in (18.a) and (18.b) respectively, become: 

                                                                1V r t t V    s T ,T s'                                             (20.a) 

                                                             1Q d r t t V    s, T ,T s'                                          (20.b) 

If we also consider that the optimal value function in state s'   is    'max , 'dV Q d 
s' s'  

(according to Comşa et al., 2018b), then the above equations can be rewritten as follows: 
                                                  '1 max , 'dV r t t Q d 

   s T ,T s'                                         (21) 

For the purpose of the scheduling process oriented on GBR satisfaction, the optimality of these functions 
is not guaranteed since the state-action pairs are not exhaustively stored and enumerated. The aim is to 
find the best approximations of these functions by implementing the neural networks. During the learning 
stage, the value and action-value non-linear functions must be updated in each state according to the 
received rewards. The way of how thee weights of these functions are updated gives in fact the type of RL 
algorithms which is used. Actually, based on equations (20.a), (20.b) and (21), each RL algorithm has its 
own strategy to perform the learning stage. 

4.5 State Space Aggregation 

Under its original form, the momentary scheduler state is variable due to the dependence of controllable 
parameters on the number of active users. Also, the CQI state depends as well on the number of RBs and 
implicitly on the system bandwidth. For these reasons, the scheduler state space needs to be aggregated in 
order to reduce the state dimension to fixed value regardless the number of active users and system 



bandwidth.  The aggregation scheme aims to reduce the complexity of neural networks and speed-up the 
learning process. Comşa (2014) proposes an aggregation technique of CQI state space under three layers: 
1) the pre-processing layer is responsible of eliminating the system bandwidth dependence; 2) 
classification layer performs the Radial Basis Function (RBF) classification for each user CQI to a given 
cluster of preprocessed CQI and 3) regression layer applies statistical models to extract the most relevant 
features. Therefore, the CQI state space dimension is reduced from tI B  to 4. Also, we use the proposal 

given by Comşa et al. (2018b) to reduce the dependency on tI  of the controllable elements   Ct c  and 

user arrival rates. We use the mean and standard deviation function based on likelihood estimators for 
each of these vectors that are depending on the number of users. This way, we obtain a reduction of this 
space dimension from 5tI   to 2 5 . The vector of GBR requirements does not need to be processed, 
since the same requirement is set for all active users. Thus, by encompassing the compression techniques 
expressed above, the obtained state is  t v  that is an aggregate version of  t s  with a much 

lower dimension. 

4.6 Function Approximations 

The proposed RL framework makes use of 1D   neural networks: the neural network used to 
approximate the optimal value function is used as a critic regarding the selected actions on each states 
whereas other D  neural networks are used to approximate the optimal action value functions for each 
considered scheduling rule. Then, let V   :  be the value neural network and Q    : action-

value neural networks represented based on the following equations: 

                                                                      ,tV N      v v                                                        (22.a) 

                                                                    ,d
d tQ d N      v, v                                                    (22.b) 

where  1, ,..., DN N N  are the neural networks that model the non-linear functions,  1, ,..., D
t t t    are the 

weights at TTI t for each neural network, and   v  is the feature vector with non-linear transformations. 

Figure 2 illustrates the insights of the proposed RL framework when the learning stage is conducted based 
on five types of RL algorithms. At each TTI t, the momentary state  t v  is propagated through all 

neural networks. If the action selection block decides to exploit the non-linear functions, then the 
scheduling rule corresponding to the neural network with the highest output is selected. Otherwise, a 
random action is chosen to perform the scheduling task. This state and action are saved in the MDP entity. 
At TTI t+1 when the reward is received the neural networks are updated according to the performed RL 
algorithm that uses the temporal difference values given by one of the equations (20.a), (20.b), and (21). 
After the learning stage is finished, the exploitation stage uses only the action value neural networks that 
rank the best scheduling rule to be applied in each compressed scheduler state. 

Each neural network needs to define its structure before the learning stage is performed. A neural network 
is defined by L number of layers and lM  number of hidden nodes for each layer  1,2,...,l L . The 

number of hidden nodes for input layer 1M  is the dimension of the compressed state  t v  and  



 

Figure 2 Proposed RL Framework 

1LM   since a single output value is provided by each neural network. A given vector of weights 

consists a number of 1L   matrices of weights to be updated such as: 1,2 2,3 1,, ,...,t L L    w w w , where 

the matrix between layers  1l   and l  is:  1, , 1; 1,..., , 1,...,l l j k l lw j M k M   w . So, when running the 

learning stage, these weights for each neural network are updated according to the data provided by the 
MDP entity in three main stages: a) forward the momentary states     , 1t t  v v'  through the neural 

networks; b) determine the error to be reinforced in each neural network according to the type of RL 
algorithm; c) back-propagate the errors to update the weights for each involved neural network. 

4.6.1  Forward Propagation 

We denote by  1l

v  the compressed scheduler state being propagated through 1l   layers including the 

biased points and by  lv  the scheduler state at the output of layer l . Then, the non-linear transformation 
between layers 1l   and l  becomes (Comşa et al., 2018b):   

                                                                    1
1,

l lT
l l l 

 v = w v                                                               (23) 

where  1l
v  denotes the input values of  1lv  plus the bias point. The result of propagating the input state 

 t v  through the entire structure looks like (Comşa et al., 2018b): 

                                            1
1, 1, 1... ...L T T

L L L l l lV   
     v = v w w v                                     (24) 

Actually in the learning stage, the momentary state is propagated through a number of 1D  neural 

networks and the obtained values are:       1, ,...,L L L
Dv v v .   

4.6.2  Error Calculation based on RL Algorithm 

Over the learning stage, we aim to learn a set of 1D   neural networks. But at each TTI, only the value 
neural network and only one action value are updated at each TTI, where the updated action-value neural 
network corresponds to the selected rule in the previous state. Let us consider that the framework is in the 



current state v'  at TTI t+1 and the selected action in the previous state  v  is  a t d . Then, at 

TTI t+1 only the weights  , d
t t   are updated. This is done by reinforcing the corresponding errors that 

are able to evaluate the quality of scheduling decisions at each TTI. We define by  1 , ',t te  v v  the value 

error calculated at TTI t+1 by using the value neural network with weights t . Similar,  1 , ',d d
t te  v v  is 

the action value error corresponding to the neural network with weights d
t . These errors measure the 

difference between the target values obtained by using equations (20.a), (20.b) and (21) reported to 

propagated values       1, ,...,L L L
Dv v v in state v . In this sense, different RL algorithms are used to 

learn the best non-linear functions able to take proper scheduling decisions for different traffic types and 
network settings: 

a)  QV (Wiering and van Hasselt, 2009): the target functions for both value and action-value functions 
are determined based on equations (20.a) and (20.b), and the errors are calculated as follows:  

                                          , ', 1t te r t t V V          
v v T ,T v' v                              (25.a) 

                                      1 , ', 1d d
t te r t t V Q d   


       
v v T ,T v' v,                            (25.b) 

b) QV2 (Wiering and van Hasselt, 2009): the action value error is similar to (25.b),  the target value 
functions is determined based on (20.a),  and the value error is calculated as follows:  

                                         , ', 1t te r t t V Q d          
v v T ,T v' v,                               (26) 

c)   QVMAX (Wiering and van Hasselt, 2009): the action value error is similar to (25.b), the target for 
the value function is determined based on (21) and the corresponding error is determined as: 

                                    ', ', 1 max , 't t de r t t Q d V   


       v v T ,T v' v                      (27) 

d) QVMAX2 (Wiering and van Hasselt, 2009): the action value error is similar to (25.b), the target 
value function is determined based on (21) and the corresponding error is calculated as follows: 

                               ', ', 1 max , 't t de r t t Q d Q d   


       v v T ,T v' v,                       (28) 

e)  ACLA (Van Hasselt and Wiering, 2009): the value error is determined similar to (25.a); if this 
error is  , ', 0t te  v v , then the action  a t d  applied in state  v  is a good option. 

Otherwise, the probability of selecting this action must be decreased. The action-value error is 
determined as follows: 
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Regardless the chosen RL algorithm to conduct the learning stage, both value and action-value errors 
must decrease over time. At each TTI, the instantaneous errors must be reinforced in the corresponding 

neural networks in order to refine the weights , d
t t  , process entitled back propagation. 

4.6.3  Back Propagation  

Both errors  1 1, d
t te e  are back-propagated layer by layer at TTI t+1. For simplicity, we explain the back-

propagation concept for the value error while the action-value error follows the same computations. Let 

us define the vector of errors 
1

( 1) ( 1) ( 1) ( 1)
1 1 2, ,...,

l

l l l l
t Me e e



   
    e  that is propagated to output of layer 1l  . 

These errors are back-propagated from layer l by using the following formula (Van Hasselt, 2011): 

                                                                ( 1) ' ( )
1 1,l T T l

t l l t

   e w e                                                           (30) 

where ' ' ' '
,1 ,2 ,, ,...,
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l t l l l M Me e e          e . By following 

equation (30), the errors are back-propagated to the input layer. We proceed in this way to update each 
particular matrix of weights between all layers by using the gradient descent principle. We denote by 

 1, 1, 1; 1,..., , 1,...,t t
l l l l l lw j M k M    w  the matrix of weights between layers l  and 1l   that needs to 

be updated. For these computations, we need the propagated vector  1lv  to the output of layer 1l  and 

the error at the input of layer l  ' ( )
1, l

l t  e  (if we browse the neural network from input to output layer). 

Then, the updating process of weight 1,
t
l lw  takes the following form (Van Hasselt, 2011): 

                                                             1 ( ) ' ( )
, , ,

t t l l
j k j k t j l k kw w v e                                                              (31) 

where  0,1t   is the learning rate and ( )l
jv  is the output value of node j  of layer l . 

 

4.7 Action Selection in Learning Stage 

In the learning stage, after updating the neural weights, an action has to be decided for state  1t  v'  . 

The action selection block from Figure 2 aims to enhance the exploration of the scheduler state space by 
selecting the improvements or exploitation steps based on some probabilities. Two types of probability 
distributions are studied:  - greedy and Boltzmann. The former one aims to select the action 

 1a t   based on the following policy function (Van Hasselt, 2011): 
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otherwise
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|v'
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                                                 (32) 

where    1 ' 0,1t d    is the random variable for action  1 'a t d  , 1t   is the probability that decides 

between improvement and exploitation steps, and ( )L
dv'  is the output value of action-value neural network 

in state  1t  v'  . Parameter   can be fixed or can evolve according to some functions. Lower   



values imply more improvements steps since random actions are likely to be selected. On the other hand, 
higher   values imply more exploitation steps. The Boltzmann distribution considers only the output of 
the action-value neural networks. The potentially good actions for momentary state v'   are determined 
by using the following policy function (Van Hasselt, 2011): 

                                                               
 

( )
'

( )

exp
'

exp

L
d

L
dd

d








v'
|v'

v'
                                                        (33) 

where  0,   is the temperature factor that sets how greedy the action should be. Lower   values 

imply a more greedy scheduling policy that aim to select the scheduling rule corresponding to the neural 
network with the highest output. When   is very large, the selection is more random. 

5. SIMULATION RESULTS 

The purpose of the obtained simulation results can be divided in two categories: (a) to study the 
performance of QV, QV2, QVMAX, QVMAX2 and ACLA RL algorithms for different traffic types and 
network settings and b) to evaluate the performance of learnt scheduling policies compared to state-of-the 
art schedulers. Three types of traffic are considered: infinite buffer, CBR and VBR. For each traffic type, 
the learnt scheduling policies are studied in terms of different settings of the windowing factor   in order 
to find the optimal filter length when computing the average user rates that maximizes the percentages of 
TTIs when all active users are 100% satisfied from the viewpoint of the GBR objective. The pool of 
scheduling rules consist the following techniques: BF, mM, RAD and LM as expressed by equations (6)-
(10). For each configuration (traffic type and windowing factor), the learning stage is launched only once 
with the same time period. Ten simulations with different random user positions are launched for the 
exploitation stage. The results are averaged and the standard deviations are presented for each RL 
algorithm. 
 

5.1 Parameter Settings 

The considered system bandwidth is 100 MHz with the maximum number of 100B
 RBs. The 

retransmission scheme is an ARQ algorithm with maximum 5 retransmissions. Data packets failing to be 
retransmitted within this limit are declared lost. During learning and exploitation stages, the number of 
active users is randomly changed at each 1000 TTIs in the domain of  15;120tI  . All users are moving 
in the macro-cell scenarios with 120kmph by using the random direction mobility model for the learning 
and exploitation stages in order to experience as many CQI observations as possible. For the interference 
model, we consider a cluster with 7 cells, and the simulation model runs only on the central cell, with 
others being used to provide the interference levels. The training stage runs for 500s by using the same 
user-network-application conditions for all five RL algorithms. The exploitation stages are launched in 10 
different simulations of 95s each, and the results are averaged 
 
The full buffer traffic model will consider full data queues at any time. However, those data packets 
which are waiting in the queue for more 300ms are dropped and implicitly are declared lost. The rates of 
CBR traffic that are also changed in the same interval of 1000 TTIs with the same values for all active 
users belonging to the following set  32;64;128;256;512;1024 . The VBR traffic generates the packet 
sizes and arrival rates according to Pareto and Geometric distributions (Comsa 2014a), respectively. The 
GBR requirements for each traffic type are switched for each active user randomly in the same interval of 
1000 TTIs from the set of rate requirements    32;64;128;256;512;1024iT t  kbps. In this way, the envi- 



Table 1. OFDMA RL Framework Parameters 

Parameters Name Description/Values 
 

System Bandwidth/Cell Radius 20 MHz/1000m 
User Speed/Mobility Model 120kmph/Random Direction 

Channel Model Jakes Model 
Path Loss / Penetration Loss Macro Cell Model / 10 dB 

Interfered Cells/Shadowing 0/8dB 
Carrier Frequency/DL Power 2GHz/43dBm 

Frame Structure FDD 
CQI Reporting Mode Full-band, periodic at each TTI 

PUCCH Model Errorless 
Scheduler Type BF, mM, RAD, LM 
 1 2 3 4; ; ;      51.25;13.1 10 ;10.1;2  

Traffic Type Homogeneous: Infinite Buffer, CBR, VBR 
Max. Number of schedulable users 10  

RLC ARQ Acknowledged Mode (Max. 5 retransmissions) 
AMC Levels QPSK, 16-QAM , 64-QAM 
Target BLER 10% 

Number of Users Variable: 15-120 
RL Algorithms QV, QV2, QVMAX, QVMAX2, ACLA 

Controller Timescale 1 TTI 
Number of layers for neural networks 3 

Number of Hidden Nodes 100 
Exploration/Exploitation Periods 500s/95s 

Windowing Factor  2.5;4.0;5.5  
Dynamic GBR Constraints  32;64;128;256;512;1024iT kbps  

Maximum HoL Delay 300ms 
CBR Traffic Type Data Rates based on GBR Constraints 

 32;64;128;256;512;1024 kbps   
 

VBR Traffic Type 
Packet size: Pareto Distrib.  35.5; 1.1x    

Arv. Rate: Geometric Distrib.  1.5; 1.93    
 

 
ronment is very dynamic and the proposed RL framework is able to experience a variety of network 
conditions. 
 
Based on some extensive simulation results, the optimum number of maximum schedulable uses at each 
TTI is set to max 10I  . It is also observed that for very low windowing factors, the GBR requirements 
cannot be satisfied by any involved scheduling rule. Very high windowing factors will increase the time 
when the GBR requirements are satisfied by the proposed scheduling policies and they are not able to 
react and take appropriate decisions for such large horizons of user throughputs. However, we would like 
to find the most suitable value for the windowing factor for each traffic class such that the GBR 
satisfaction is maximized. The rest of scheduler parameters are provided in Table I. 



Table 2. RL Algorithms’ Parameters 

RL 
Algorithm  

Learning Rates for 
Action Value 

Functions 

Learning Rates 
for Value 
Functions  

Discount 
Factor 
   

 
Exploration Type 

 ,   
QV 0.001 0.00001 0.99 Boltzmann  1 0   
QV2 0.001 0.00001 0.95 Boltzmann  1 0   

QVMAX 0.001 0.00001 0.99 Boltzmann  1 0   
QVMAX2 0.001 0.00001 0.95 Boltzmann  1 0   

ACLA 0.0001 0.0001 0.99 Greedy  45 10    

 
The controller parameters are represented by learning rates, discount factors, exploration parameters 
 ,   and the configuration parameters of neural networks. For the given time period of learning, these 

parameters need to be properly set in order to minimize the set of errors  1 2, , ,..., de e e e . Table 2 

illustrates the most suitable parameters for each RL algorithm. Also, the neural networks need to be 
parameterized before launching the learning stage in terms of  1, ,..., LL M M . When the neural network 
is too flexible (involving large number of layers and hidden nodes), the RL framework complexity is 
higher, the learning is slower and the neural networks may overfit the input data. On the other side, 
reducing the number of hidden layers and nodes will underfit the input data in the sense that some parts 
from the scheduler state space will not be very well represented by the neural network functions. In both 
cases, the value error starts to increase starting at certain points in the learning stage. Different 
configurations of neural networks are tested by using extensive simulation results and considering the 
under-fitting, over-fitting and system complexity trade-off, the optimal setting for each neural network 
when addressing the GBR objective is: 3L   and 2 100M  . The same configuration is used for value 
and action-value neural networks. Also, the activation function for input and output layers  1 3,   is 
linear and for the hidden layer 2 is tangent hyperbolic. 
 
The learning performance is studied for each RL algorithm which is used to update the neural network 
weights by measuring the percentage of TTIs when the reward is punishment, moderate and maximized, 
respectively. Let  1 0p r    be the mean percentage of TTIs when the reward is punishment,

 0 1p r   is the mean percentage of TTIs when the reward is moderate and finally, we denote by

 1p r   the mean percentage of TTIs when the reward is maximized and consequently, the GBR 
requirements are satisfied by all active users. The aim is to find those scheduling policies that are able to 
provide the highest amount of  1p r   and the lowest percentage of  1 0p r   . In the exploitation 
stage we also measure the mean percentage of TTIs when certain percent of users satisfies the GBR 
requirements. Let %q  be the percentage of users that satisfy the GBR requirements and  %p q the 
mean percentage of TTIs when the GBR objective is met for %q  of active users. The exploitation stage is 
running in the same conditions as the learning stage and the simulation conditions are similar to all 
involved scheduling and RL algorithms. 
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5.5 General Remarks 

Alongside the windowing factor parameterization, the type of simulated traffic has a great influence on 
the performance of the exploited policies. In this sense, the proposed LM scheduling rule outperforms 
other candidate schemes from the viewpoint of the percentages of TTIs when the active users are satisfied 
in proportion of 100% for the full buffer traffic model. Only the policy trained by ACLA algorithm can 
follow the trajectory imposed by LM by indicating a gain of 5% to 40% when measuring  100%p  

performance metric. For this traffic type, the optimum windowing factor is 5.5  . With the CBR traffic 
type, the combination of different scheduling rules improves the GBR satisfaction of all active users by 
about 15% to 20% when ACLA policy is exploited. But the optimum windowing factor is reduced to 

4  . When the VBR traffic type is scheduled, the proposed scheduling policies are able to provide the 
best results only if the windowing factor is 4  . For larger windowing factor values, the exploited 
scheduling policies are able to provide the best percent of TTIs when all active users are satisfied but at 
the price of degrading the performance when the interval is    65% ; 95%p p   .  

6. CONCLUSIONS 

This chapter proposes an innovative RL framework able to improve the GBR satisfaction for different 
types of traffic such as: full buffer, CBR and VBR. These traffic characteristics were chosen in order to 
cover a wide range of applications with various arrival rates and GBR requirements (e.g. video, VoIP, 
FTP, web browsing). By taking into account the dynamic channel conditions and traffic loads within the 
learning stages, the stability of the learnt policies are evaluated in terms of various RL algorithms. Each 
RL algorithm aims to select in each momentary scheduler state the most suitable scheduling rule that can 
get the highest GBR satisfaction outcome. In order to reduce the complexity of the proposed RL 
framework due to the very high dimension of the scheduler state space, the scheduling decisions are 
approximated by using non-linear neural networks. The simulation results indicate that the proposed RL 
framework is able to outperform other conventional scheduling rules when setting optimum time 
windows of average user rates for each category of involved traffic. 
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