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ABSTRACT  
In access networks, the radio resource management is designed to deal with the system capacity 
maximization while the Quality of Service (QoS) requirements need be satisfied for different types of 
applications. In particular, the radio resource scheduling aims to allocate users’ data packets in 
frequency domain at each predefined Transmission Time Intervals (TTIs), time windows used to trigger 
the user requests and to respond them accordingly. At each TTI, the scheduling procedure is conducted 
based on a scheduling rule that aims to focus only on particular scheduling objective such as: fairness, 
delay, packet loss or throughput requirements. The purpose of this chapter is to formulate and solve an 
aggregate optimization problem that selects at each TTI the most convenient scheduling rule in order to 
maximize the satisfaction of all scheduling objectives concomitantly TTI-by-TTI. The use of reinforcement 
learning is proposed to solve such complex multi-objective optimization problem and to ease the decision 
making on which scheduling rule should be applied at each TTI. 

Keywords: Scheduling, Scheduler State Space, Utility Functions, Optimization, Reinforcement Learning. 

 

 

1. INTRODUCTION  

The continuous growth of mobile data usage and the increased interest for immersive video applications 
are pushing network operators to find suitable solutions to accommodate these services with very 
stringent Quality of Service (QoS) demands (Cisco, 2017). According to Trestian, Comsa, and Tuysuz 
(2018), the Quality of Experience provisioning will become the main differentiator between network 
operators, in which, the satisfaction of heterogeneous QoS requirements is playing a crucial role. In this 
context, the 5th Mobile Generation (5G) technology comes up with the promise of very low end-to-end 



latencies and much higher system capacity while implementing some important features such as (G. 
Andrews et al., 2014): new waveforms, densification of access networks, higher frequency bands, mass 
scale antennas and millimeter-wave communications. An issue to be addressed when delivering these 
bandwidth-hungry applications in multi-user scenario refers to the management of radio resources that 
can strongly affects the overall performance of QoS provisioning (Li et al., 2017). The responsible entity 
is the Radio Resource Management (RRM) that aims to ensure an efficient allocation of the disposable 
system bandwidth in order to maximize the QoS satisfaction while implementing advanced technologies 
(as provided by Olwal, Djouani, and Kurien, 2017) able to: save the energy, control the mobility and 
power allocation, mitigate interference, schedule users’ packets in frequency domain at each TTI. 
 
According to the performance of the scheduling process, the operator is struggled to provide the requested 
services while using the disposable radio infrastructure, regardless of the spatial/time positions of mobile 
terminals, user preferences, devices’ types and application requirements (Comşa, 2014a). A major 
concern is to increase the system capacity or data rates of all active users while satisfying the application 
requirements. Users located in the proximity of base stations experience better channel quality and 
consequently can get higher data rates than those users with poorer channel quality located farer away 
from any available base station. By providing the disposable spectrum to those users with better channel 
conditions, other users are starved in receiving the requested data for longer time. Then, the fairness 
measure between different users with the same QoS profiles is impaired. Certain tradeoff measures 
between system throughput and user fairness can be adopted (Jain, Chiu, and Hawe, 1984; Comşa, 
2014a). Together with these aspects, the requested services should be provided under some predefined 
QoS requirements (as imposed by 3GPP, 2012) in terms of Guaranteed Bit Rate (GBR), Head of Line 
(HoL) packet delay and Packet Loss Rate (PLR). The QoS requirements become more restrictive with the 
evolution of cellular standards, system architectures and applications. By encompassing the above 
discussed aspects, the packet scheduler is dealing with an optimization problem aiming to maximize the 
system throughput and being constrained by fairness and QoS requirements. If we further consider that 
the constraints’ satisfaction refer to fairness and QoS objectives, then the Multi-Objective Optimization 
(MOO) is addressed (as stated by Comşa, 2014a). 
 
At each TTI, the scheduling procedure is conducted based on the scheduling rule that aims to prioritize 
active users in frequency domain (Toufik and Knopp, 2011). In literature, these rules are various, and 
each of them is targeting particular scheduling objective (as surveyed by Capozzi, Piro, Grieco, Boggia, 
and Camarda, 2013). Actually, the scheduling rule quantifies the benefit of allocating each user in the 
frequency domain from the perspective of the addressed objective. For this reason, almost all state-of-the-
art scheduling rules impact differently when considering the multi-objective satisfaction criterion (Comşa, 
2014a). For example, some scheduling rules are oriented more on the tradeoff between system throughput 
maximization and user fairness satisfaction while degrading the performance of QoS objectives 
(Proebster, Mueller, and Bakker, 2010). Other rules aim to focus more on particular QoS objective (i.e. 
delay) while harming the performance of other QoS objectives (i.e. GBR, PLR), system throughput and 
user fairness (Liu, Tian, and Xu, 2013). Therefore, the multi-objective performance strongly depends on 
the adopted scheduling rule.  
 
Alongside of the exploited scheduling rule, the multi-objective satisfaction depends also on the 
momentary scheduler states, observed at each TTI and being composed by: channel conditions, number of 
users, QoS parameters, queue loads, application types, etc. Actually, when the scheduler conditions 
permit (reduced number of users, very good channel conditions, low traffic load), the multi-objective 
target can be attained by almost all existing scheduling rules. However, under more generalized scheduler 
state space (variable traffic types, channel conditions, number of user, etc.) particular scheduling rules are 
unable to reach an acceptable level for the multi-objective satisfaction. Hence, it can be envisioned that a 
mixture of scheduling rules can be used instead of a single one adopted across the entire process, in 



which, the scheduling rule that gives the highest multi-objective outcome in each scheduler state must be 
found and applied in order to maximize the multi-objective satisfaction measure over time. 
 
This chapter deals with the multi-objective optimization problem where the joint assignation of radio 
resources and scheduling rules is considered in downlink scheduling. The general idea is to find in each 
instantaneous scheduler state the most convenient scheduling rule to be applied in order to maximize the 
overall system throughput while keeping the QoS constraints satisfied as long as possible. Due to the 
increased complexity of the proposed aggregate optimization problem, we adopt the use of machine 
learning tools in order to find suitable solutions in each scheduler state. In this sense, the Reinforcement 
Learning (RL) framework is proposed to learn over time the most convenient scheduler rule for each 
momentary state (as initially proposed by Comşa, Aydin, Zhang, Kuonen, and Wagen, 2011, 2012). The 
implementation of RL framework for downlink Orthogonal Frequency Division Multiple Access 
(OFDMA) scheduling is also addressed. The choice of OFDMA is due to its simplicity, efficiency and its 
wide deployment, being one of the multiple access schemes to be considered in 5G networks 
(FANTASTIC-5G, 2016). 
  

2. BACKGROUND  

In general, one scheduling rule is focused first on the main objective; once the main objective is satisfied, 
the static scheduling rule can optimize other objectives with the amendment that the first objective is 
always satisfied. In this case, the multi-objective optimization problem becomes Sequential MOO 
(SMOO). As some studies show (Lundevall et al., 2004; Ning, Ying, and Ping, 2006; Zhang, Yuan, and 
Zhang, 2011), the SMOO problems are considering the GBR satisfaction as a primary objective, whereas 
the user fairness satisfaction or user throughput maximization is considered once the GBR objective is 
satisfied for all active users TTI-by-TTI. The same principles of SMOO are targeted by the proposed 
scheduling rules in (Rhee, Holtzman, and Kim; 2003; Sadiq, Madan, and Sampath, 2009; Bae, Choi, and 
Chung, 2011) where the delay is the first objective. Another scheduler (as proposed by Khan, Martini, 
Bharucha, and Auer, 2012) aims to focus first on the PLR satisfaction followed by other objectives such 
as fairness and throughput. The biggest disadvantage of these rules is the lack of consideration of all QoS 
objectives. Since these rules are static over the entire scheduling process, the optimization problem is 
entitled Static Scheduling Rule based SMOO (SSR-SMOO). 
 
When a different scheduling rule is applied at each TTI, then the Dynamic Scheduling Rule (DSR) 
principle is addressed. Schwarz, Mehlfuhrer, and Rupp (2011) address the DSR-SMOO problem in the 
sense that the Generalized Proportional Fair (GPF) is parameterized in order to optimize the throughput-
fairness trade-off in terms of Jain fairness index (first introduced by Jain et al., 1984). The RL framework 
is proposed by Comşa, Zhang, Aydin, Kuonen, and Wagen (2012) to achieve different tradeoff levels 
between system throughput and user fairness. But this quantitative fairness objective used in these 
approaches are static and do not depends on channel or network conditions. Instead, the qualitative 
fairness measures based on channel statistics can be used, such as Next Generation Mobile Networks 
(NGMN) fairness (Proebster et al., 2010). According to this metric, the GPF scheduling rule should be 
adapted at certain TTIs, such that, the Cumulative Distribution Function (CDF) of normalized user 
throughputs is adjusted to respect the requirement from the CDF domain, as studied by Proebster et al. 
(2010). However, when using actor-critic RL algorithm (as proposed by Comşa et al., 2014b) to 
parameterize the GPF scheduling rule based on dynamic scheduler conditions in order to increase the time 
when the NGMN fairness requirement is satisfied, the obtained gain is higher than 10% when compared 
with the method proposed by Schwarz et al. (2011), and higher than 20% when compared to the 
adaptation technique proposed by Proebster et al. (2010). But all these approaches use a simple 
parameterization of GPF scheduling rule (considering only   parameter adaptation) when matching 
against the NGMN fairness requirement. In the study conducted by Comşa et al. (2014c), the same actor-



critic RL algorithm is used to perform the double parameterization of the GPF scheduling rule in terms of 
both   and   parameters. The results indicate a gain larger than 5% when compared to actor-critic RL 
framework that uses the simple parameterization. The advantages of these RL-based frameworks reveal a 
higher capacity to adapt to a more generalized scheduler state space and an increased level of satisfaction 
for the NGMN fairness requirement. The QoS objectives are not considered in these optimization models.  
 
In other circumstances, one static scheduling can optimize multiple objectives at the same time when 
applied TTI-by-TTI. The optimization procedure is called Static Scheduling Rule based Concurrent MOO 
(SSR-CMOO). Another scheduling proposed by Khan et al. (2012) considers the joint optimization of 
PLR and delay objectives, while the fairness objective is considered once the primary multi-objective 
satisfaction is achieved. Other schedulers aim to split the scheduling process in two stages (as indicated 
by Monghal, Laselva, Michaelsen, and Wigard, 2010; Chung, Chang, and Wang, 2012; Wang, Li, Ji, and 
Zhang, 2013; Avocanh, Abdennebi, and Ben-Othman, 2014): a) time domain where the group of users 
with more stringent QoS requirements is prioritized to be scheduled in b) frequency domain, where the 
radio resources are allocated for the preselected users. In these cases, the QoS objectives are targeted in 
time domain, whereas the frequency domain deals more with the trade-off between system throughput 
maximization and user fairness provisioning. Although these rules aims to satisfy the entire set of 
objectives, there is not a clear evidence how these schedulers will perform under generalized RRM state 
space (channel types, variable number of users and traffic types, arrival rates in data queues, etc). 
 
By combining the concurrent multi-objective optimization and the dynamic scheduling rule selection 
(DSR-CMOO), a mixture of different scheduling rules is used, in which one rule is applied at each TTI in 
order to improve the satisfaction measure when multiple scheduling objectives are addressed. Different 
RL algorithms are implemented by Comşa et al. (2018) for Constant Bit Rate and Variable Bit Rate traffic 
types in order to maximize the number of TTIs when the PLR and delay constraints are satisfied. The 
proposed framework makes use of four scheduling rules that are oriented only on the delay objective. 
Gains higher than 10% are obtained for the proposed RL framework when compared to other 
conventional static scheduling rules. In other studies (Comşa, De-Domenico, and Ktenas, 2017; Comşa, 
Trestian, and Ghinea, 2018), the actor-critic RL framework is used to optimize the scheduling rule 
selection in each state when PLR, GBR and delay objectives are considered. These proposals aim to 
minimize the disadvantages of each particular scheduling rule while maximizing their advantages by 
applying on each scheduler state the best scheduling rule such that the multi-objective satisfaction is 
maximized. The throughput maximization and user fairness objectives are not taken into account by these 
proposals. 
 
This chapter considers the DSR-CMOO model that aims to combine the static scheduling rules with the 
main focus on the following objectives: throughput maximization, NGMN fairness requirement and QoS 
constraints satisfaction in terms of PLR, GBR and delay. In Section 3, the OFDMA scheduling elements 
are presented in terms of: scheduler state, resource allocation procedure, utility and objective functions. 
Section 4 presents the general form of SSR-SMOO problems when each scheduling objective is 
considered separately. Section 5 formulates the proposed DSR-CMOO aggregate problem based on each 
particular SSR-SMOO problems. Section 6 provides a sub-optimal solution to this complex problem 
based on the RL approach. Finally, this chapter concludes with Section 7. 

3. ODFMA SCHEDULING PROCESS  

The scheduler process is conducted based four main components: scheduler state space, scheduling 
procedure, scheduling rule, and MOO performance evaluation. The scheduler state space contains all 
parameters necessary to conduct the scheduling procedure at each TTI. The scheduling procedure in 
OFDMA systems includes: the user selection for each radio resource according to the exploited 
scheduling rule; the Modulation and Coding Scheme selection (MCS) for each scheduled user; and the  



 

Figure 1. OFDMA Scheduling Process 
 
Transport Block (TB) computation that actually gives the total number of bits to be transmitted to each 
scheduled user based on the amount of allocated radio resources and supportable MCS. A scheduling rule 
is associated with the resource allocation process in order to satisfy given objectives. The MOO 
performance evaluation gives a satisfaction measure for all scheduling objectives at each TTI according to 
the applied scheduling rule in the previous state. The OFDMA scheduling process is presented in Fig. 1.   
 
In OFDMA scheduling, the available bandwidth is divided in B number of resource blocks every TTI. If 
we also consider a number of tI  number of users that can change at each TTI t, then the most pretentious 
task in OFDMA scheduling is to find the potential benefit of allocating each Resource Block (RB) 

 12j , ,...,B   to certain users  1 2t ti , ,...,I   when a given performance criterion is addressed based 
on the exploited scheduling rule. More precisely, being given a certain performance criterion, the 
scheduler should be aware about the exact price or cost value of allocating RB j to UE ti   for its 
target objective satisfaction. So, the scheduler is responsible for optimizing the obtained pricing structure 
problem every TTI. 
 
The potential benefit quantification of using some limited resources is inherited from the utility theory in 
economics which has been applied with great success in wireless networks in order to guarantee the QoS 
requirements and to exploit the multi-user diversity principle in opportunistic scheduling (Liu, Chong, 
and Shroff, 2001). In OFDMA networks, the proposed scheduling procedure maps the performance 
criteria in some utility metrics for each user ti   and for each RB j. Then, the instantaneous 
optimization problems resume to the sum maximization of each user utility TTI-by-TTI.  
 
Adopting the performance criteria in order to evaluate the performance of user centric objectives for 
different type of services represents a crucial task. As mentioned earlier, by using classical scheduling 
procedures, it is difficult to satisfy multiple objectives simultaneously. Therefore, some priorities in 
satisfying particular objectives are given by adopting different performance criteria at once as denoted by 
SSR-SMOO problems. However, the performance criteria indicate basically the types of utility functions. 



For instance, if the utility function addresses the HoL packet delay performance, the scheduler is designed 
in such a way that the packet delay budget should be satisfied in certain requirements. If the optimality of 
the first condition is satisfied, then other objectives can be considered depending on the particularity of 
the utility function.  
 
In Figure 1, based on the selected performance criterion (or scheduling objective to be satisfied) and the 
type of utility function, a scheduling rule is selected to conduct the scheduling procedure each TTI. At 
TTI t, the scheduler momentary state is observed and according to the decided scheduling rule, a number 
of tB I  metrics is calculated by considering the metrics of all users ti   for each RB j . The 
resource allocation performs for each RB from  the metric ordering of all users metrics calculated on 
that particular RB. Only users with the highest metric for each RB are selected to be scheduled at TTI t. 
This means actually the urgency for those users to be scheduled in order to maximize the given 
performance criterion. Then, the MCS levels are assigned and the TB determines actually the amount of 
data to be broadcasted to those selected users. After the scheduling procedure is completed, the system 
moves to the next state at TTI t+1. Only at this stage, the real multi-objective measure is determined in 
order to evaluate the scheduler performance in previous state, at TTI t. 
 
 

3.1 Scheduler State Space  

An important role in OFDMA scheduling is represented by the scheduler state space since both 
optimization approaches, SMOO and CMOO, perform the scheduling procedure at each TTI based on the 
momentary scheduler conditions. The scheduler state space is exploited in different ways based on the 
optimization type: 

 In the SSR-SMOO optimization, the scheduler state space provides the necessary parameters for 
the utility function computation in the scheduling procedure; 

 For the DSR-SMOO and DSR-CMOO problems, alongside the utility parameters provision, the 
scheduler state space is responsible for choosing a proper scheduling rule in order to meet the 
proposed objective. 

 
Inevitably, the selected scheduling rule affects part of the scheduler state space evolution. The scheduler 
state space is divided into two disjoint sub-spaces: 

 Uncontrollable scheduler state space: The CQI reports, HARQ retransmissions indicators, 
arrival bit rates, QoS requirements are included. We define the measurable uncontrollable state 
space U  and   Ut z  the momentary uncontrollable vector at TTI t. 

 Controllable scheduler state space: The parameters responsible for the objective performance 
evaluation, such as HoL delay, average user rate, normalized user rate, packet loss rate, and queue 
size are included. Similarly, we define the measurable controllable state space C  and   Ct c  
the momentary controllable vector at TTI t. 

The overall measurable state space is defined as U C     and the momentary scheduler state at TTI t 

is    t , s z c . Each of these elements is detailed in the following sub-sections. 
 
 
3.1.1 Uncontrollable Scheduler State 
 

The uncontrollable scheduler state space represents the indices and parameters that reflect mainly the 
channel conditions, the service parameters from the upper layers, and the QoS requirements for each 
active data flow. Even if these parameters are modeled as random processes rather than the scheduling 



procedure results, the obtained subspace plays a crucial role in achieving satisfaction of different 
objectives. The uncontrollable state space U  encompasses the following elements: 

 Channel Quality Indicator (CQI) Reports: It is assumed that at each TTI t, each user ti  
reports the CQI value for each RB j  through the PUCCH control channel. Let us define 

 i , jCQI t
 as the CQI report value of user ti  and resource block j  at TTI t. Then,  C Q I t  

is the momentary vector of all CQI reports for all active users defined as follows: 
                               1

1 t

j ,..,Bi , j
i ,...,I

CQI t CQI t 


                                                             (1)  

 Achievable user rate: Based on the  i , jCQI t  reports, the achievable user rate  i , jr t  is 

computed for the scheduling decision. For each  i , jCQI t , a MCS is determined in order to 
provide the number of bits that can be transmitted if RB j  would be allocated to user ti . 
Similarly to CQI reports, the vector of instantaneous rates is obtained based on: 

                                                        
    1

1 t

j ,..,Bi , j
i ,...,I

t r t 


   r                                                             (2) 

 Instantaneous arrival rate: We define the arrival rate in data queue for user ti  at TTI t as

 i t .  Then, the instantaneous vector of arrival rates is defined by   1 2 tI
t , ,...,     λ  with the 

amendment that for each user is considered only one data queue. 
The momentary uncontrollable scheduler state is obtained by taking into account the indicators introduced 
above such as:    t CQI, ,z r λ . 
 
 
3.1.2 Controllable Scheduler State 
The controllable scheduler subspace denotes the set of indices which are used for the multi-objective 
performance evaluation. Basically, when C  is optimal, the entire scheduler state is considered optimal. 
Under these circumstances, other subspace U  provides the necessary information to maintain the 
scheduler in the optimal region by satisfying all scheduling objectives. The controllable subspace being 
considered here comprises the following elements: 

 Instantaneous user rate: When performing the scheduling procedure, the instantaneous user rate 
 iR t  represents the total number of bits associated to the scheduled user ti  . The associated 

vector is:    1 2 It R ,R ,...,RR . 
 Instantaneous user throughput: If the transmitted packets in the previous TTI were correctly 

decoded by each scheduled active user (HARQ report is zero), then the instantaneous user rate 
becomes the instantaneous user throughput  iT t . Consequently, the instantaneous throughput 

vector becomes    1 2 It T ,T ,...,TΤ = . 

 Average user throughput: It is used to improve the fairness among users. If  iT t  is used as the 
fairness satisfaction metric, then the scheduler should be fair at each TTI. This aspect is 
undesirable because it affects the spectral efficiency performance. Therefore, it is preferred to 
evaluate the fairness performance by using a time window or a predefined number of TTIs. So, 
the average user throughput  iT t  is determined as follows: 

                                                       1 1i i iT t T t T t                                                     (3) 



where   represents the forgetting factor which impacts in the scheduler performance. The lower 
values for parameter   implies in fact lower impacts of the current scheduling procedure of the 

optimization problem. The instantaneous vector is:   1 2 It T ,T ,...,T   Τ . 

 HoL packet delay: We define by  id t  the maximum waiting time for a given data packet in the 
MAC level data queue for user ti  . The momentary delay vector is    1 2 It d , d , . . . , dd = . 

 Packet Loss Rate: We denote by  iL t  the packet loss rate at TTI t that indicates the number of 
lost packets over the total number of sent packets in a given time window of wT . We define the 
momentary vector of PLRs as    1 2 It L , L , . . . , LL . 

 Transmission queues size: We define  iq t  the transmission queue size for user ti   at TTI t. 

Consequently, the instantaneous queue vector is    1 2 It q ,q ,...,qq = . 

Then, the momentary controllable scheduler state becomes   Ct , , , ,    c R Τ Τ L d,q .  

 

3.2 Radio Resource Allocation 

The main focus for the OFDMA scheduler is to assign the available set of RBs to different active users in 
order to satisfy given scheduling objectives. The idea is to quantify the benefit (utility) of allocating each 
RB j  to user ti   at each TTI t. In this sense, the utility function has to be defined.  
 
For our scheduling purposes, the utility functions cannot be measured directly. The solution is to perform 
the instantaneous rate allocation based on the utility representation at each TTI t and to measure or to 
evaluate the allocation performance at each TTI t+1 by using the objective functions. We define by 

1 2
T

, I,...,   r r r r
 
the instantaneous achievable rate matrix being obtained based on the CQI reports, where 

1 2i i , i , i ,Br ,r ,...,r   r  is the vector of instantaneous rates of each user ti   .  
 
For each user ti  , let us consider  i iU r  the utility function which is a benefit representation of 
allocating the vector of rates ir  to user ti  . In long term, the packet scheduler aims to maximize the 
aggregate user, such as: 

                                                  
  

t
i it it ,i

max U t
 




r                                                         (4) 

 
In multi-user scenario, the disposable set of RBs is allocated only to some users at each TTI according to 
some allocations variables      1 1i , j tb t b t ,i ,...,I , j ,...,B    that take the binary values as follows: 

                                                  
1

0
t

i , j

, if RB j is allocated to UE i
b

, otherwise

   


 
                                    (5) 

 
The instantaneous data rates  iR t  for each user are obtained after performing the scheduling decision 
under the allocation variables b  at each TTI t. Let us define the instantaneous rate region constrained by 
policy b  such as b .  Therefore, the definition domain for the utility function is i bU  :  and the 
long-term optimization problem becomes (Song and Li Geoffrey, 2005): 



                                                      
 

 
1 1

0 1

i i , j i , ji jb

i , ji

i , j

max U b r

b , j ,...,B
s.t .

b , , i , j



 

    

 


 

                                                (6) 

According to Kelly (1997) the local maximum is also a global maximum in (6) if and only if the region 
b is a convex set and  i iU R  is a concave function. However, the convexity problem of b  in OFDM 

systems has been discussed intensively by Song (2005) and the authors came with the conclusion that the 
short-term optimization problem at each TTI t can be obtained by using the first order approximation of 
Taylor’s expansion as expressed by (7) (as stated by Song, 2005) 

                                 

             1 1 1'
i i i i i i i ii i i

U R t U R t U R t R t R t                                 (7) 

where        1 1 1'
i i i i iU R t U R t R t       is the marginal utility for user ti  . The instantaneous 

rate  1iR t   at TTI t-1 is obtained after performing the scheduling procedure at TTI t-1 and this value is 
used in the optimization problem at TTI t. Therefore, the short-term optimization problem can be written 
under the following form: 

                                                         

 
      

 
   

1 1

0 1

'
i , j i i i , ji jb t

i , ji

i , j t

max b t U R t r t

b t , j ,...,B
s.t .

b t , , i , j

 

 

    

 


 

                                                

(8) 

 
The optimization model being exposed in (8) represents a linear programming model where the unknown 
variables are the resource assignment variables    0 1i , jb t ,  that need to be determined at each TTI t. 
Due to the reduced number of resources that has to be allocated at each TTI, the assignment is performed 
by using the following equation: 
                                                                   

t

'
j i i i , j

i
m t arg max U R t r t


 


                                                (9) 

where,  jm t  indicates that RB j  is assigned or allocated to user tm   m i   at TTI t. 

Consequently,   1m, jb t   and   0i , jb t , ti    and i m  . This way, the user assignment is 
performed for each RB for a given bandwidth. Once the resource allocation is finished, the transport 
block size is determined for each selected user. 
 
As mentioned earlier, the instantaneous rate for each user ti   and for each RB j  is determined 
based on the CQI reports. The marginal function is positive because the utility function  i iU R  must be 
concave (the second derivative is negative) in order to assure the linearity of the considered optimization 
problem. When the utility function  i iU R  takes the polynomial form, the role of its marginal utility is to 
schedule those users with the highest instantaneous rates by increasing at the same time the total system 
capacity if the radio channels are errorless. In the case of re-transmissions, the marginal utility as a 
function of instantaneous user throughput  '

i iU T  should be used in order to provide more RBs to those 
users which require less retransmissions during the downlink scheduling session to avoid the waste of 
radio resources. 
 
The linear programming model exposed in (8) is a typical SSR-SMOO problem being focused on the 
system throughput maximization without considering other objectives such as: user fairness, GBR, HoL 
delay, packet loss. The impact of the resource allocation problem in the scheduling objectives can be 
measured by using the objective functions. The objectives functions can be modeled by using the QoS 



constraints. When different objective(s) is (are) analyzed, the performance of the optimization problem 
from (8) can be improved if the marginal utility function considers the performance parameter(s) of the 
addressed objective(s). More details about this aspect are presented in the following section. 
 

3.3 Utility and Objective Functions in OFDMA Systems 

Utility functions are designed to quantify the benefit of allocating a given and finite number of RBs to 
active mobile users. The type of utility function can influence the optimization problem in the direction of 
different scheduling objectives. The classification of utility functions can be achieved by considering 
three perspectives: the argument function, the utility weight and the manufacturing methodologies. Based 
on the manufacturing methods, there are two modes to obtaining utility functions (as provided by Song 
and Li Geoffrey, 2005; Song, 2005) exposed bellow together with the proposed methodology: 

 Application based utility functions: One way is to develop utility functions that characterize a 
specific type of application which can be obtained by using sophisticated subjective surveys. 
These utilities can suffer from the imperfection of the measurements, and different parameters are 
fixed to some objective values denoting the inflexibility for those situations which are not 
covered by the considered surveys. 

 Traffic habits based utility functions: statistics about the percentage of different traffic types 
that can co-exist at different moments of time in different urban scenarios. The utility functions 
are designed based on these statistics of heterogeneous traffic types.  

 Scheduler state based aggregate utility function: Based on the scheduler state s , different 
utility functions (being already proposed in the literature) are applied in order to maximize the 
long term aggregate utility function and to solve the DSR-SMOO/CMOO combinatorial 
problems. More precisely, it maximizes the sum of some existing utility functions subject to some 
objective functions’ requirements.  

 
The short-term optimization for the resource allocation is obtained when performing the first order of 
Taylor’s expansion between two time consecutive utility functions. This way, the marginal utility 
function or the first derivative utility function is obtained. The term of marginal can refer also to a small 
change that can appear in the optimization problem between two consecutive momentary scheduler states. 
In fact, the marginal utility indicates high gains for those users with poor objective performance, whereas 
other users with much better multi-objective performance are getting much lower gains. In this sense it is 
encouraged to allocate higher amount of resources to those users with higher gains in the marginal utility. 
 
In the optimization problem exposed in (8), when selecting any gain in the marginal utility function leads 
to the system capacity maximization without any consideration about other objectives. By designing the 
marginal utility with proper weights, different objectives can be addressed. So, the role of the marginal 
utility in the optimization problem is to reduce the impact of the instantaneous achievable rate  i , jr t  (or 
to annihilate any variation of the radio channel) and to focus the entire optimization problem on 
scheduling different users based on their performance of satisfying different objectives addressed by 
different marginal utility weights. To conclude, the multi-objective performance depends on the type of 
marginal utility which is used in the optimization problem.  
 
To generalize the utility function representation, we define i i x  the argument of the utility function 
for user ti   and i iy  the argument for the utility weight, where C � , ii

�   and 

ii
 �  . Therefore, the utility function for user ti   can be decomposed as follows: 

                                                                    i i i i i iU F W x x y                                                             (10) 



where function i iF  :  is concave and differentiable, and the utility weight i iW  : of user 

ti   is a constant, but it is represented as a function in order to highlight the objective indicator 

 1 2 I, ,...,  y = y y y , where  , , , ,y= R ΤΤL d . 

 
When one element for the controllable parameters set  ii i i i iR ,T ,T ,L ,dy  respects the corresponding 

QoS constraints, then user ti   is satisfied from the viewpoint of the addressed objective. The first 
derivative for the utility function is determined by using      ' '

i i i i i iU F W x x y , where 
   '

i i i i iF F  x x x . If the marginal utility function is developed in such a way that the radio channel 
variations are compensated at each TTI t for each user ti       1'

i , j i ir t F x , then the optimization 

problem is focused more on the scheduling objective evaluated by the weight argument y . 
 

4. SINGLE OBJECTIVE OPTIMIZATION PROBLEM 

In this chapter, we study five objectives such as: throughput maximization, NGMN user fairness, 
guaranteed bit rate, packet delay satisfaction and packet loss minimization. We consider   the set of 
aforementioned objectives. For each objective o , let us define the pool of utilities o , and then, the 
entire set of utilities for all objectives is defined as oo

  . As mentioned earlier, the type of 

marginal utility for objective o  is correlated with the utility weight. If o ou    is the weight index 
targeting the objective o , then the short-term optimization can be obtained for the general form of 
scheduling utilities by using the first order of Taylor’s expansion and being similar to (7): 
                                   1 1'

o ,i i o ,i i o ,u ,i o ,i i i i ii i i
U t U t W t F t R t R t        x x y x            (11) 

where,    io ,i i i i it R ,T ,T ,L ,dy  is the controllable QoS parameter targeting objective o  and 

  o,u ,i o,iW ty  is the weight function o ou    that aims to maximize the resource allocation from the 

perspective of the same objective o . Then, the optimization problem when both o  and o ou  
are static becomes as follows: 
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y x

                                 (12) 

where the optimization problem is focusing on objective o subject to the convex set of constraints. 
The optimization problem of (12) is a linear programming model. If      '

o,u ,i i i , jW t F t r t  , then the 
addressed objective o  is evaluated based on the weight argument  o ,i ty  for each user ti  . At this 
extent, the weight matrix for objective o  is  1 1' '

o o ,u ,i o ,u ,i i o o tU U W F ,u ,...,U ,i ,...,I      . In 

SSR-SMOO problems, the weight matrix oU  assigns the same type of marginal utility functions to 
each user ti   for the entire scheduling session.  
 
The optimal resource allocation when following the linear optimization problem from (12) for each RB 
j  and user ti    is given by the following metric calculation: 

                                                       
t

'
j o,u ,i o,i i i i , j

i
m t arg max W t F t r t


  


y x                                       (13) 



where  jm t  indicates that RB j  is allocated to user tm ,   m i   at TTI t.   Then,   1m, jb t   and 

  0i , jb t ,
tm ,   ti    and i m  . Therefore, the scheduling rule function can be defined in the 

following manner: 
                                          o,u,iD  :            '

o ,u ,i o ,i o ,u ,i o ,i i iD t W t F t y y x                               (14) 

If the objective o  and the utility weight o ou    stay fixed during the entire scheduling session, then 
the linear optimization problem from (12) is a SSR-SMOO/CMOO problem. The CMOO refers to the 
fact that the argument of   o ,u ,i iW ty  can be multi-dimensional and the optimization problem is focusing 

on two or more objectives, and the argument is a vector of  1 2i ,i ,i O,i, ,...,   y y y y . 
 
The performance of the scheduling discipline o ,u ,iD  can be evaluated by using the objective functions. Let 

us define the objective function   o,i o ,i t y  for objective o  and user ti  , where the definition 
domain is o ,i  : . The objective condition for a particular SSR-SMOO problem for each user ti   
at each TTI is given by: 

                                                              0o ,i o ,i tt , o , i      y
                                                    

(15) 
When the condition is satisfied for each user ti  , then the scheduler becomes optimal at TTI t from the 
viewpoint of objective o . Therefore, the aggregate function for all users and objective o   
becomes:        1

1 tI
o o t o ,i o ,ii

t I t 


 y y . 
 

In DSR-CMOO problems, the impact of each scheduling rule in each objective is strongly required. In 
this sense, the aggregate multi-objective function 

o

I O
o,u

  :  when applying the scheduling rule

o ,u ,iD , can be represented as indicated in (16): 

                                                                o * * **

O
o ,u o o ,u oo

t t   y y                                                (16) 

where  1 2 O, ,...,y = y y y  and 
o

I
o ,u


 :  is the aggregate function of objective o  when the 

scheduling rule 
oo,u ,iD

 is considered for each user ti  . Parameter *o  is the weight for each particular 
objective function 

oo ,u


, o  . The necessary and not sufficient condition to be satisfied by the 
aggregate multi-objective function at each TTI t for the entire set of active users is: 
                                                                             0

oo ,w t y                                                                (17) 
Equation (17) should be satisfied only and only the condition (16) is met for each user ti   and for each 
objective o . Precise details about each scheduling objective are provided in the following sub-
sections. 

4.1 Throughput Maximization 

For throughput maximization ( 1o  ), the utility argument is  i it Rx  and the weight function is 

  
11 1,u ,i iW t y . The multi-objective evaluator grants the scheduling performance according to objective 

function 1, :i   , ti    where      1, 1t tI I
i i ii i

t T t T t     . The role of this particular 
optimization problem is to increase the total cell throughput at each TTI in such a way that  1, 0i t  . If 

in (13) the product is       1'
o ,u ,i o ,i i iW t F t y x , then we obtain the Maximum Rate scheduling rule, 

aiming to maximize at each TTI the total cell spectral efficiency.  



4.2 User Fairness 

The user fairness should be guaranteed at each TTI while affecting the system capacity maximization. 
Then, a new scheme is required in order to give more flexibility to the system throughput improvement. 
The time window (a given number of TTIs) used in user throughput computation constrains or relaxes the 
fairness performance depending on its length. By adopting  i it Tx  as an argument for the marginal 
utility function, the resource allocation at TTI t depends on the allocation history in the previous TTIs. 
The averaging procedure can be achieved basically in two ways:  

 By using the Exponential Moving Filter (EMF): The forgetting factor   is used to control the 

system throughput and user fairness tradeoff as indicated in (3), where 1TTI Ew/ T  , and EwT  is 
the time window length. This means that a higher average throughput implies a lower priority for 
that user to be selected on the considered RB. The only condition is to set  larger than the 
channel correlation time in order to exploit the time diversity principle as revealed by Song 
(2005). When the time window EwT  is too large, the cell spectral efficiency is affected whereas 
when the time window is too small, then the user fairness is not sensed anymore. 

 By using the Median Moving Filter (MMF): The idea is to store the instantaneous user 
throughputs for a given time window MwT  and to use the mean value of these observations at each 
TTI in order to balance the system throughput and user fairness tradeoff.  

 
The NGMN fairness is one of many others criteria that can be used to compute the objective function 
According to this principle detailed by Proebster et al. (2010), the CDF calculated for a given set of 
average/instantaneous user throughputs should not exceed a given NGMN threshold. Based on some 
convergence studies presented by Song (2005), the local optimization considers  2 i,i t Tx

 as an 

argument for the utility function and the weight function is   2 2 1,u ,i ,iW t y  since the QoS requirements 

are not included at this stage. A particular type of marginal utility function is     2 1'
i i,iU T t T t  which 

implies the metric of       ij i i , jm t arg max r t T t  , known in the literature as the Proportional Fair 

(PF) scheduling rule, proposed by Kelly (1997).  
 
In particular, the NGMN fairness objective function can be determined according to the following 
formula:      2

R
,i i i i it NT NT   , where i i mNT T T   is the normalized user ti   throughput, 

 i iNT  is the CDF function of user ti   for a given distribution of input normalized observations and 

 R
i iNT  represents the NGMN fairness requirement.  

4.3 Guaranteed Bit Rate 

When the rate constraint satisfaction ( 3o  ) is considered in the optimization problem, the utility 
function weight is composed by:  3 i,i t Tx

 and  3 ,i it Ty , where  iT t  represents the average user 
throughput calculated by using the median moving filter. This way, the first objective is to satisfy all 
users’ GBR requirements and then to focus more on user fairness by scheduling those users with lower 
throughputs. In this way, we measure the performance of such optimization problem by developing the 
following objective function:      3

R
i,i it T t T t   , where R

iT  is the GBR requirement of user ti  . 
According to (15), the mean user throughput should be greater than the GBR requirement at each TTI t in 
order to meet its objective.  



4.4 HoL Packet Delay 

If the utility weight depends on the instantaneous HoL packet delay ( 4o  ) such that  4 ,i it dy  and 

 4 i,i t Tx , then the optimization problem considers the HoL packet delay as the first priority in the 
satisfaction of the performance criterion. Then, the delay based objective function that has to be 
maximized for each active data queue at each TTI t becomes      4

R
,i i it d t d t   , where R

id  is the HoL 
delay requirement.     
 

4.5 Packet Loss Rate 

The packet loss objective ( 5o  ) represents an important performance target in OFDMA packet 
scheduling. The utility weight depends on    5 ,i it L ty  and the utility argument keeps a similar form of 

 5 i,i t Tx . The objective function used to measure the performance of radio resource allocation from the 

viewpoint of PLR performance becomes:      5
R

,i i it L t L t   , where R
iL  is the PLR requirement. The 

PLR rate  iL t  is computed as a ratio between the number of lost packets and total number of transmitted 

packets. The same time moving window length used to compute the mean user throughput iT  can be used 
also in this case to calculate the instantaneous packet loss at each TTI. 

5. MULTIPLE OBJECTIVE OPTIMIZATION PROBLEM 

Optimization problems similar (12) address only particular SMOO problems and each problem is linear 
guaranteeing at the same time the global optimal solution when selecting the decision variables for the 
radio resource assignment. By adopting different utility functions, the scheduling procedure impacts 
differently in multi-objective problem. We formulate the aggregate function by considering the utility 
functions introduced in the previous sub-sections, such as:   

                                              
     1 o t

oo

O U I
t o ,u ,i o ,io u i

U U I U x    x                                         (18) 

 
The proposed multi-objective problem in the long term purpose aims to maximize the sum of utilities for 
each scheduling objective as indicated by the following statement: 

                                                                     
C

t
max U t


  
 

x                                                                 (19) 

By adopting the first order approximation of Taylor’s expansion for each of the utility functions, the 
instantaneous multi-objective optimization problem becomes: 
                                        

 
       

oob

'
o ,u ,i o ,i o ,i o ,i i , jo u i jr t

max W y t F x t r t


      


                        (20) 

 
According to (20), we need a policy that selects different utility functions at each TTI from the pool of 
utilities  . Similar to decision matrix  b t , instead of users, the new decision matrix will consider the 
number of objectives and instead of resource blocks, the policy takes into account the existing scheduling 
rules for each objective. Also, at each TTI, the selection of only one objective is required while multiple 
users can be selected within one TTI when following the decision matrix  b t . Then, we define by 

    oo,uc t c t the scheduling rule decision matrix, where 1o ,...,O,  and 1o ou ,...,U . According to (20), 

for each active user ti  , the same marginal utility o ou   must be assigned at each TTI t. Also, we 
need an additional variable able to assign a marginal utility function to each active user. In this sense, the  
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matrix
     1 1

ou ,i o o tw t w t ,u ,...,U ,i ,...,I    assigns the scheduling rule for objective o   to each 

user ti   at TTI t. Also, this matrix differs from one TTI to another when addressing DSR-CMOO 
problems. 
 
The multi-objective optimization problem in OFDMA scheduling is formulated in (21), where the first 
constraint denotes the necessary condition of selecting at each TTI t only one scheduling rule according to 
the addressed objective. Constraints (b) indicate that only one marginal utility function is selected for the 
entire set of active users at each TTI t.  Constraints (c) and (d) indicate that the same marginal utility 
function is assigned to all users at each TTI. Constraints (e) are the well-known conditions of assigning 
resource blocks to different users. Finally, the set of constraints (f) considers the aggregate multi-
objective condition from (16). This implies that for the selected rule (   1

oo,uc t  ), the sum of aggregate 
functions for each objective at TTI t+1 should be greater than zero since the evaluation of the scheduling 
procedure is performed in the next TTI. If the objective conditions from (21.f) are satisfied o   and 

ou  , then the scheduler is optimal when a given DSR-CMOO problem is addressed. 
 
The idea is to find at each TTI t the optimal set of decision variables in order to maximize the 
optimization problem and to respect the set of constraints.  Due to the product      

o o

o
o,u u ,i i , jc t w t b t  , the 

optimization problem becomes non-linear and thus, the optimal solution in not guaranteed. In (21), the 
MOO optimization can be divided into three categories based on the dynamicity of the rule selection: 

 SSR-SMOO:  occurs when objective o   and the marginal utility function o ou    are 
static over the entire transmission session. In this case, the SSR-SMOO problem refers to the 
classical optimization problems from (12) and constraints (a-d) and (f) from (21) are not required; 

 DSR-SMOO: if o   is static over the entire downlink scheduling session and  o ou t    is 
variable TTI-by-TTI. In this case, different marginal utility functions are used concurrently in 
order to achieve the same target or objective, and constraints (f) consider only the satisfaction of 
the particular aggregate objective function; 

 DSR-CMOO when both  o t    and  o ou t    are variable over time. Different utility 
functions with different objective targets may be applied in order to achieve the aggregate 
objective concomitantly. Only in this particular case, the aggregate multi-objective conditions or 
constraints (f) are fully taken into account.  



By selecting the decision variable  
oo,uc t  at each TTI, the scheduler evolves from state  t  s  to the 

next one  1t '  s s . Due to the time dependence process, the optimization problem from (21) is 
dynamic. The newest state  s'  contains the momentary uncontrollable subspace  1 Ut   z  which is 

not depending on decided variables       o o

o
o,u u ,i i , jc t ,w t ,b t  at TTI t. For these reasons, the problem from 

(22) is considered dynamic and stochastic. Solving these combinatorial problems is not trivial since to 
find the best decision variables requires consistent computational time and system complexity. 
Developing a policy of scheduling rules is one of the best ways to ease the decision making at each TTI. 
We define a policy of scheduling rules as   1 1 1

oo,u o oc t o ,..,O,u ,..,U ,t ,...,     ; represented by a 

generic set of scheduling rules or marginal utilities that are applied dynamically TTI-by-TTI based on the 
momentary scheduler states. An example of such policy is indicated in (22): 

                                                  1 3 3 2 2 5 4 31 2 3, , , ,c t ,c t ,c t ,c t ....                                      (22) 
 
The optimality of such policies (  ) relies the selection of the best decision variables at each TTI in such 
a way that the set of constraints from (21) is fully satisfied and the outcome of QoS satisfaction is 
maximized over time. The optimization and refinement of such sequences abovementioned are not trivial 
due to the stochastic nature of the process which requires an infinite state space for searching the optimal 
solution. Two main approaches can be proposed for the policy optimization: 

1. Evolutionary methods: e.g., expression and evolutionary programming; 

2. Dynamic programming methodologies: e.g., real-time dynamic programming and temporal 

difference based learning algorithms such as reinforcement learning techniques. 

Under the assumptions of constant power allocation and the sub-optimal MCS allocation, the complexity 
of DSR-CMOO problems is  tO U I B  Ο . Each algorithm above-mentioned requires a reasonable 
number of scenarios in order to fine tune the final policy for the real-time downlink scheduling.  

6. MULTI-OBJECTIVE SCHEDULING BASED ON REINFORCEMENT LEARNING 

Once the scheduling rule variable  
oo,uc t  is fixed, the entire aggregate problem is reduced to a simple 

resource allocation procedure. To solve such non-linear optimization problems, three approaches can be 
adopted, as follows: 

 Sequential Problem Linearization: converts the non-linear problem into its corresponding linear 
representation. Unfortunately, the computation complexity increases with the size of  , and this 
approach becomes immediately unsuitable for real-time OFDMA scheduling. 

 Parallel Problem Linearization: divides the non-linear multi-objective problem into U linear 
sub-problems. Basically, this approach aims to run different schedulers in parallel by performing 
different scheduling rules. After the assignment of RBs is performed for each parallel process, the 
scheduling rule which maximizes the optimization problem and respects the constraint set is 
selected. This approach becomes unsuitable when optimizing the fairness objective and infinite 
number of utilities is considered due to the continuous parameterization of the PF rule. 

 Sequential Problem Linearization in Two Stages: divides the non-linear multi-objective 
problem in two different stages of linear optimization problems. The solution is sub-optimal, but 
with some optimization tools the optimal solution can be very well approximated. 

Due to its reduced complexity, we adopt the last solution that actually is solving the multi-objective 
satisfaction maximization in the first instance, followed by the simple resource allocation problem in the 
second instance, being governed by the selected scheduling rule from the first optimization problem. 



6.1 Sequential Linearization in Two Stages  

The main task of the linear optimization problem in (21) is to determine the best decision variable  
oo,uc t  

at each TTI t in order to maximize the problem and to respect the given set of constraints. But this 
procedure is not guaranteeing the satisfaction of constraints (f) which implicitly highlights the 
performance of the entire scheduling procedure when one scheduling rule has been applied. In order to 
tackle this problematic issue, these constraints must to be included in the optimization problem by using 
relaxation methods. In this sense, the Augmented Lagrangian function and the dual optimization problem 
are required (Nocedal and Wright, 2006). We define the augmented Lagrangian for our problem as:  
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            (23) 

where the first term is the optimization function to be maximized from (21), the second term represents 
the Lagrange relaxation function and finally, the third one is the penalty function as given by Nocedal and 
Wright (2006). Basically, the augmented Lagrangian is considered to be a combination of Lagrange 
relaxation and penalty methods in solving complex constrained optimization problems. In (23), 

oo,u  is 

the penalty factor and  
oo,u tA  is the accumulated Lagrange multiplier that has to be updated TTI-by-TTI. 

According to Nocedal and Wright (2006), the accumulated Lagrange multiplier is updated by using the 
following formula: 
                                                     1 1

o o o o oo,u o,u o,u o,u o,ut t c t t      A A                                        (24) 

and     oo ,ut t  A A  is the matrix of Lagrange multipliers at TTI t and  oo ,u   is the penalty 

matrix for each objective o  and for each marginal utility function o ou   . Then, let us define the 
concave Lagrange dual function  A  A  which is defined as shown in (25): 

                                                   O U o
A A A

c,u,b
, sup c,w ,b,       A A:                                       (25) 

 
The objective is to find the optimal Lagrange dual function  A

 A at each TTI t in such a way that: 

      

                    o * o* *
A A A

c,w,b
t sup c t ,w t ,b t , t c t ,w t ,b t , t         A A* A     (26) 

where       * o* *c t ,w t ,b t  are the optimal assignment matrices at TTI t and  t A  is the optimal 

matrix of Lagrange multipliers being calculated online at each TTI t. The role of the Lagrange dual 
function

 
is to learn the optimal Lagrange multipliers and to take the assignment decisions based on their 

optimized values at each TTI. When the learned matrix of Lagrange multipliers is optimal, then the 
scheduling decision variables are optimal. Based on these aspects, the dual optimization problem is 
presented in (28). 
The multi-objective problem exposed in (27) is a non-linear programming problem where term (1) and (2) 
in the optimization problem aim to select the best scheduling decision matrix in order to maximize the 
accumulated Lagrange multiplier and the aggregate multi-objective function at TTI t+1, whereas the third 
term is the typical resource allocation procedure performed based on the selected marginal utility function 
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(27) 
      
By selecting the optimal matrix  *c t  in the first term, the second term is also maximized. Thus, the 
proposed sequential linearization method aims to split the non-linear optimization problem into two sub-
optimal linear sub-problems as follows: 

 First stage, the scheduling rule that maximizes the product between the accumulated Lagrange 
multiplier at TTI t and the aggregate multi-objective function at TTI t+1 must be selected as 
indicated in the following equation: 
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 Second stage, the allocation procedure of radio resources for the active users is performed based 
on the selected rule from the first stage and the optimization problem is similar to (12). 

 
The linear optimization problem from (28) can be solved by selecting the decision variable  

oo,uc t  

according to the accumulated Lagrange multiplier  
oo,u tA  such that, the instantaneous aggregate multi-

objective function  1
oo,u t   would be maximized. There are two main problems in selecting the optimal 

decision variable  
oo,uc t  at each TTI: a) the scheduling policy   has to be optimized and the 

accumulated Lagrange multiplier must be updated by many TTI-to-TTI iterations; b) the optimization 
process of the scheduling policy is practically impossible since the scheduler state space is not considered 
when the Lagrange multiplier 

oo ,u A  and the aggregate multi-objective function 
oo ,u  are computed.  

 
 



6.2 Scheduler State Space in Multi-Objective Optimization  

Let us define the set of neighbor states    s  being composed by those possible states to which the 

current state  ts  could evolve based on different selections of  
oo,uc t , and then the next state is 

  s ' s . By using the terminology from the machine learning domain as given by Sutton and Barto 

(2017), the action value  
oo,uQ s  and the reward  

oo,uRW s'  functions are obtained based on the 
accumulated Lagrange multiplier and aggregate multi-objective functions, respectively, as follows: 
   

                                 
     
   

1
o o o

o o o

o ,u o ,u o ,u

o ,u o ,u o ,u

t RW , RW

t Q , Q

    

   




  

  

s' s

s



A

:

:
                                      (29) 

where the reward function  
oo,uRW s'  measures the  performance of applying the scheduling rule 

corresponding to the decision variable  
oo,uc t  when the current state is state s ;  

oo,uQ s  is the 

accumulated reward for the decision variable  
oo,uc t  being applied only in the scheduler state s  for 

an infinite number of visits. By using the above notations, the dual optimization problem is highlighted in 
the following equation:  
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where  
o

o
u ,sd t  is the variable that decides the next state s'   and the considered assignation matrix is 

    1 1
o

o o
u ,s o o od t d t ,u ,...,U ,s ,...,O U    , o  .

 
The optimization problem in (30) is non-linear due 

to the product between the scheduling rule and the next state variables such as: 
o o

o
o,u u ,sc d . An additional 

variable is needed for linearization, such that      
o o o

o
o,u ,s o,u u ,se t c t d t  , where the matrix which indicates 

the scheduler state evolution at TTI t+1 when the decision variable  
oo ,wc t  has been applied in the 

previous state is
     1 1

oo o,u ,s o o oe t e t ,u ,...,U ,s ,...,O U    . Then, the obtained linearized optimization 

problem is exposed in (31), where the first set of constraints (a) acts as an AND gate, where the input 
variables    0 1

o o

o
o,u u ,sc d ,; count four possible binary combinations and the parameter    0 1

oo,u ,se t , is 

the output variable, where l   is a large positive number. If   1
oo,u ,se t  , then   1

oo
o,u ,so u s

e t   
which means that the scheduler is evolving to an unique state at TTI t+1 based on the selected objective 

o   and utility function o ou   . Constraints (b) indicate that only one scheduling rule focused on a 
particular objective is selected. Constraints (c) associate only one scheduler state  ' s s  according to 
the selected scheduling rule in state s  . Constraints (d)-(f) make the entire problem combinatorial. 
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6.3 Temporal Difference Learning for Multi-Objective Optimization Problem 

The idea is to select the best decision variable  
oo,uc t  that maximizes the accumulated reward  

oo,uQ s

and to assign the state  s'  according to  od t , such that, the RRM reward  
oo,u ,sRW s'  at TTI t+1 is 

maximized. In real practice, when deciding the assignation variable  
oo,uc t , the future state  s'  is 

automatically determined at TTI t+1 as a result of the scheduling procedure. For this reason, the linear 
optimization problem exposed in (31) is valid only when the scheduling policy is optimal. In this case, by 
selecting the action (scheduling rule) with the maximum action value in state s then the reward 
maximization in the next state is guaranteed (Sutton and Barto, 2017). On this extent, in each momentary 
state, the best scheduling decision is determined such as    

o oo,u o,uc t arg maxQ  s , where  
oo,uQ s  is the 

optimal accumulated reward value for objective o   and scheduling rule o ou   (or the optimal 

action value for action  oo,u  in state s ). Then, the scheduler reward at TTI t+1 is maximized when 
the optimal decision is applied.  
 
Similar to other control systems (as described by Sutton and Barto, 2017), the idea is to maximize the 
total expected return or the expected accumulated reward aRW  for a given policy of scheduling rules   

starting from any initial state  t s s  until the optimal scheduler state  ot
s s is reached, where ot  is 

the time needed to reach the optimal state s  when given a certain order of applied scheduling rules 
following   from any random initial state  t s . The accumulated reward for the considered policy is 
discounted according to (32) (Sutton and Barto, 2017): 
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            (32) 



where  01,  is the discount factor that sets the importance of future rewards. Equation (32) is the case 
of temporal difference learning, where the reward value can be deducted by following the reasoning: 
                                                    1 1a aRW t RW t RW t      s s s                                          (33) 

We know that when the scheduling policy is optimal   , then the instantaneous scheduler reward 
  1RW t s  is equivalent with the difference between the accumulated rewards from two consecutive 

states as indicated in (33). Actually, the accumulated reward aRW  in state s  for a given policy  is 
similar to 

oo,uQ on that state. Under optimality conditions, the instantaneous reward from (34) can be re-
written as follows: 

                                                       1 'o o'
o,u o',u

RW t Q Q     s s s'                                                (34) 

where o'   and '
o' ou   are the selected objective and scheduling rule in state s' . 

 
The scheduling policy   needs to be improved by using many visits of state s  in order to learn the 
optimal objective o  and the utility function o ou  that maximize the accumulated reward value

 
oo,uQ s .  This stage is entitled the learning since all possible scheduling rules have to be tested for each 

given momentary scheduler states. Once this policy is refined and trained properly, the exploitation stage 
is performed. In this stage, the optimization problem exposed in (33) is satisfied since the scheduling rule 
that maximizes the accumulated reward  

oo,uQ s  is selected and maximizes at the same time the reward 

value in next state s' . 
 

6.4 Reinforcement Learning in DSR-SMOO/CMOO Problems 

The scheduler state space is continuous and multi-dimension and practically the size of the neighboring 
states    s  is infinite due to the stochastic nature of the momentary states. Also, when optimizing 
the fairness criterion, an infinite number of scheduling rules are considered due to the continuous 
parameterization of PF scheduling rule. For these reasons the state-action pairs cannot be exhaustively 
enumerated and hence, the simplest look-up table is not suitable to store the  

oo,uQ s  values for each 
momentary state and scheduling rule. Then, the proposed framework can only approximate the best 
decisions to be taken on each state. Function approximations such as neural networks, as proposed by 
Comşa et al. (2011) (2012).  
 
The dimension of scheduler state is another important problem to be addressed. The main issue is the 
dependence on the number of active users and system bandwidth. For instance, the dimension of the 
controllable vector 1 2 tI C, ,...,    c = c c c  at each TTI depends on the number of users tI  which is also 

variable given the fact that the amount of active users can change every TTI. Also, the CQI reports for 
each user depend on the number of resource blocks associated to a given bandwidth. Then, a procedure 
able to that compact the momentary scheduler state is absolutely necessary in order to avoid such 
dependencies and to enhance the learning procedure.  
 
The machine learning framework must approximate the best scheduling selection at state-by-state. The 
Reinforcement Learning (RL) is a temporal-difference learning scheme able to provide very good 
solutions in various optimization problems (Sutton and Barto, 2017). The RL is considered a combination 
of Monte Carlo and Dynamic Programming methods. The Monte Carlo method provides the expected 
return (the sum of discounted rewards from state to state) only at the end of the learning stage and the  



 

Figure 2. Reinforcement Learning based Solution for Multi-Objective Optimization Problem 
 
tasks are non-episodic which means that the reward would eventually be maximized only at the end of the 
learning stage. On the other side, the dynamic programming method can approximate each action value 
function at each time and not at the end of the learning stage as is the case of Monte Carlo methods. 
Moreover, these action values can be updated according to the received reward in order to optimize a 
given policy. In DSR-SMOO/CMOO problems, the tasks are non-episodic for certain conditions (i.e. the 
satisfaction of all objectives may not be reached due to high number of users or/and poor channel 
conditions). However, the RL framework must approximate the best scheduling rule in each state such as 
the multi-objective satisfaction is maximized as much as possible.  
 
Different RL algorithms can be used depending on the particularities of DSR-SMOO/CMOO problems, 
as stated in the research conducted by Comşa (2014a), Comşa et al. (2014b) (2014b), and Comşa et al. 
(2018). The role of the selected RL algorithm is to update function approximator for each selected action 
 oo,u  by reinforcing each time the error    

oo o,uo,ue Q Q s s , where the  
oo,uQ s  is the approximated 

action value given by the approximator and  
oo,uQ s  is calculated based on (34) and reloaded here: 

                                                       '
o o'o,u o',uQ RW Q   s s' s'                                                   (35) 

It is important to notice that by updating the previous learned action value based on the temporal-
difference error,  

oo,uQ s  is decreased or increased by providing lower or higher probabilities for the 

decision variable  
oo,uc t  to be selected in the future when transiting nearly the same states from s to s' . 

 
From the architectural point of view, the RL based DSR-CMOO approach defines two modules: Marginal 
Utility State Informer (MUSI) and Marginal Utility Type Informer (MUTI). MUTI converts the action 
which is provided by the intelligent controller in the corresponding scheduling rule such as    , oo ua t c t



, where  a t  is the controller action. Based on the MUTI decision, MUSI provides the necessary state 
parameters in order to compute the corresponding scheduling metrics for each user and for each resource 
block. Figure 2 presents the proposed RL–based DSR-CMOO architecture for the OFDMA downlink 
scheduling. The MCS assignment procedure for the transport block computation is executed in a separate 
stage once the radio resource allocation is performed. Studies conducted by Kwan, Leung, and Zhang 
(2009) indicate a degradation of the cell spectral efficiency of about 10% when the RB and MCS 
assignments are performed in separate stages, but at a much lower computational complexity when 
compared to the joint optimization approach.  
 
As depicted in Fig. 2, in the first stage, the objective to be followed and the corresponding scheduling rule 
are selected in the first stage and then, the scheduling procedure is performed based on the data provided 
by MUSI and MUTI entities. In the learning stage, at TTI t, the momentary scheduler state  t  s is 
observed. The state aggregation module aims to reduce the dimension of the initial state to a more 
compact representation in order to decrease the complexity of the proposed framework and to learn faster. 
Based on the aggregate momentary state, the function approximator provides the action values  

oo,uQ s  

for each objective o   and utility o ou   . According to some probabilities, the controller may 

decide to apply the scheduling rule corresponding to    
o oo,u o,uo

o ,u arg max Q
   s  or to select a 

different scheduling rule in order to explore more action-state possibilities and to increase the quality of 
the learning stage. Once, the scheduling rule is decided, the resource allocation, MCS assignments and 
TB calculations are performed and the system evolves to the next state  1t '   s s . At TTI t+1, the 
RRM multi-objective evaluator determines the reward value, the error is computed according to (35) and 
reinforced in order to optimize the function approximator. The learning stage can continue for large 
number of state-to-state iterations until this error falls under a specified threshold. In the exploitation 
stage, the learnt function provides the scheduling rules to be applied in each state in order to maximize the 
multi-objective satisfaction.  
 

7. CONCLUSIONS 

This chapter proposes an aggregate multi-objective problem that aims to select in each scheduler state the 
most suitable scheduling rule in order to maximize the system throughput while increasing the 
satisfaction of scheduling objectives in terms of: user fairness, packet delay, user rate and packet loss rate. 
The proposed framework aims to minimize the drawback of each particular scheduling rule and maximize 
their benefits when applying each only on the best matching scheduler conditions. Due to the complexity 
of this aggregate optimization problem, the proposed solution splits the entire scheduling framework in 
two parts where, the first one deals with the selection of the scheduling rule in each momentary scheduler 
state and the second one performs the classical resource allocation problems. As part of machine learning 
domain, the reinforcement learning is proposed to learn over time the most appropriated scheduling rule 
to be applied in each state. Due to the complexity and the dimensionality problems of the scheduler state 
space, additional methods imported from artificial intelligence domain (i.e. data mining to compress the 
scheduler state, neural networks to approximate the best scheduling rule under each state) must be 
adopted in conjunction with the proposed reinforcement learning framework in order to make the 
proposed solution suitable for real-time downlink schedulers. 
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