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Abstract—Dominated by delay-sensitive and massive data
applications, radio resource management in 5G access networks
is expected to satisfy very stringent delay and packet loss require-
ments. In this context, the packet scheduler plays a central role
by allocating user data packets in the frequency domain at each
predefined time interval. Standard scheduling rules are known
limited in satisfying higher quality of service (QoS) demands
when facing unpredictable network conditions and dynamic traf-
fic circumstances. This paper proposes an innovative scheduling
framework able to select different scheduling rules according to
instantaneous scheduler states in order to minimize the packet
delays and packet drop rates for strict QoS requirements appli-
cations. To deal with real-time scheduling, the reinforcement
learning (RL) principles are used to map the scheduling rules to
each state and to learn when to apply each. Additionally, neural
networks are used as function approximation to cope with the
RL complexity and very large representations of the scheduler
state space. Simulation results demonstrate that the proposed
framework outperforms the conventional scheduling strategies
in terms of delay and packet drop rate requirements.

Index Terms—5G, packet scheduling, optimization, radio
resource management, reinforcement learning, neural networks.

I. INTRODUCTION

THE ENVISIONED applications in the Fifth Generation
(5G) of Mobile Technologies (e.g., traffic safety, control

of critical infrastructure and industry processes, 50+ Mbps
everywhere [1]) impose more stringent QoS requirements
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like very low end-to-end latency, ultra high data rates, and
consequently, very low packet loss rates [2]. To cope with
these challenges, access networks should be able to support
advanced waveform technologies, mass-scale antennas and
flexible Radio Resource Management (RRM) [3]. Alongside
standard RRM functions (i.e., power control, interference man-
agement, mobility control, resource allocation, packet schedul-
ing [4]), a flexible RRM involves more dynamic functionalities
able to adapt to unpredictable network conditions. Some stud-
ies have shown an increased interest of integrating Machine
Learning (ML) methodologies to learn the optimal RRM
strategies based on some centralized user-centric (i.e., chan-
nel conditions, QoS parameters) and network-centric (traffic
routing) data [5].

In the context of RRM, the packet scheduler is responsible
for sharing the disposable spectrum of radio resources at each
Transmission Time Interval (TTI) between active users with
heterogeneous applications and QoS requirements [6]. The pri-
oritized set of active users to be served at each TTI depends
on the type of scheduling rule that is implemented. Different
rules may perform differently in terms of packet delay and
Packet Drop Rate (PDR) requirements according to various
scheduling conditions. For example, the scheduling strategy
in [7] minimizes the drop rates at the cost of system through-
put degradation. The scheduling rules proposed in [8] improve
the packet delays with no guarantees on the PDR performance.
Another rule in [9] minimizes packet drops at the expense of
higher packet delays when compared with other scheduling
strategies. However, most of the proposed rules provide unsat-
isfactory performance when both delay and PDR objectives are
considered concomitantly.

Being motivated by this fundamental drawback of conven-
tional scheduling strategies and considering the requirements
of 5G networks that need to cater for applications with strict
QoS constraints, we propose a flexible RRM packet scheduler
able to adapt based on dynamic scheduling conditions. Instead
of using a single scheduling rule across the entire transmis-
sion, the proposed framework combines multiple scheduling
rules TTI-by-TTI in order to improve the satisfaction of strin-
gent QoS requirements in terms of both packet delay and PDR
objectives. To make this solution tractable in real time schedul-
ing, our approach must decide the strategy to be applied at
each TTI based on momentary conditions, such as: dynamic
traffic load, QoS parameters, and application requirements.

One solution is to use the Reinforcement Learning principle
as part of the ML domain to learn the scheduling rule selection
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in each instantaneous scheduler state in order to improve the
users’ performance measure for delay and PDR objectives
when compared to other state-of-the-art scheduling strategies.
The RL framework aims to learn the best action to be applied
at each state of an unknown environment by keeping track of
some state-action values that are updated accordingly at every
state-to-state iteration [10]. If these state-action values cannot
be enumerated exhaustively, then the optimality of such deci-
sions is not guaranteed [11]. In this paper, we aim to select at
each state a scheduling rule from the finite and discrete space
of actions. Even so, the selection of the best rule is not guar-
anteed since the scheduler state space (i.e., channel conditions,
QoS parameters) is infinite, continuous, multidimensional and
stochastic, and the scheduling problems cannot be enumer-
ated exhaustively. Thus, we can only approximate the most
convenient rule to be applied at each scheduler state.

RL decisions can be approximated by using parameterized
functions [12]. In our approach, each scheduling rule is rep-
resented by an individual function and the RL algorithm is
used to update these functions TTI-by-TTI until learning cri-
teria are fulfilled. Parameterized functions are used to rank the
scheduling rule to be applied in each instantaneous state. The
scheduler state space needs to be pre-processed in order to
reduce the complexity of the proposed RL framework.

A. Paper Contributions

The 5G networks bring the promise of very high data rates
and extremely low latencies to enable the support for advanced
applications with stringent QoS requirements. However, this is
not possible to achieve through the classical methods of RRM,
and the integration of ML is seen as a promising solution. In
this context, we propose a RL-based optimization mechanism
for RRM to enable efficient resource allocation and strict QoS
provisioning, bringing us a step closer to 5G. The approach
makes use of dynamic scheduling rule selection at each TTI
for OFDMA-based downlink access systems. The choice of
OFDMA is due to its simplicity and efficiency as well as
its wide deployment placing it among the candidate multiple
access schemes to be considered in 5G networks [13].

The contributions of this paper are divided in four parts:
1) Flexible RRM Packet Scheduler: We propose a dynamic

RRM scheduler able to select, at each TTI, appropriate
scheduling rules according to the momentary network con-
ditions and QoS requirements. The obtained results show
significant gains in terms of both delay and PDR satisfaction.

2) RL-based Framework: Here, a RL algorithm is used to
learn non-linear functions that approximate the scheduling rule
decision at each TTI based on the instantaneous scheduler
state. To evaluate the performance of different RL algorithms,
five RL algorithms were selected and implemented. Their
performance was tested in terms of variable window size,
traffic type, objective and dynamic network conditions.

3) Neural Networks (NNs) Based Rule Selection: NNs are
non-linear functions that take as input the instantaneous sched-
uler state and output the preference values of selecting each
scheduling rule on that state. Neural networks are used to
deal with the continuous and multidimensional scheduler state
space.

Fig. 1. Proposed System Model.

4) Scheduler State Space Compression Technique: This
technique aims to reduce the scheduler state space and
speed-up the learning procedure when refining the NNs′
weights. In this paper, the focus of the compression pro-
cedure is on packet delay and PDR as Key Performance
Indicators (KPIs).

The objective of the proposed RL framework is to improve
the satisfaction of heterogeneous delay and PDR requirements
when scheduling Constant Bit Rate (CBR) and Variable Bit
Rate (VBR) traffic types. The CBR and VBR traffic charac-
teristics were chosen in such a way as to cover a wide range of
applications (e.g., video, VoIP, FTP, Web browsing) and create
a more realistic environment with dynamic channel conditions
and traffic loads. By building this dynamic and realistic envi-
ronment, we can evaluate the stability of the learned policies
with different RL algorithms.

B. Paper Organization

The remainder of this paper is organized as follows:
Section II introduces the system model. Section III highlights
the preliminaries for the RL framework. Section IV details
the implemented RL algorithms and the NN function repre-
sentation. The performance of the obtained RL framework is
evaluated in Section V, and Section VI presents the related
work. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In the proposed system model presented in Fig. 1, an intel-
ligent controller decides the rule to be applied by the packet
scheduler at each TTI. We consider an OFDMA downlink
transmission, where the available bandwidth is divided in
Resource Blocks (RBs). Let us consider the set of RBs for
a given bandwidth as B = {1, 2, . . . ,B}, where B is the total
number of RBs. Additionally, we consider an User Equipment
(UE) being characterized by VBR and CBR traffic types with
heterogeneous delay and PDR requirements. Also, at each
predefined number of TTIs, an UE is able to change its status
(idle/active), data rates and QoS requirements. Let us decide
that Ut = {1, 2, . . . ,Ut} is the set of active users at TTI t,
where Ut is the number of active users.
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The packet scheduler (Fig. 1) aims to allocate a set of RBs
b ∈ B to user u ∈ Ut in such a way that delay and PDR satis-
faction is maximized. We consider the set of objectives O =
{o1, o2} to be satisfied at each TTI t, where o1 = DELAY
and o2 = PDR. For each user u ∈ Ut , we define the on-
line KPI ko,u [t ] corresponding to objective o ∈ O and its
corresponding requirement as k̄o,u [t ]. For user u ∈ Ut the
objective o ∈ O is satisfied at TTI t if and only if the KPI
ko,u [t ] respects its requirement k̄o,u [t ]. Both, delay and PDR
objectives are satisfied when ku [t ] = [ko1,u , ko2,u ] respects
the requirement vector k̄u [t ] = [k̄o1,u , k̄o2,u ]. Globally, the
proposed solution aims to increase the percentages of TTIs for
all active users when the KPI vector k[t ] = [k1, k2, . . . , kUt

]
respects the requirement vector k̄[t ] = [k̄1, k̄2, . . . , k̄Ut

], and
consequently, both network objectives are satisfied.

Let us consider the discrete set of scheduling rules as
D = {1, 2, . . . ,D}, where each rule d ∈ D has a par-
ticular impact in satisfying objectives {o1, o2} ∈ O for
certain network and traffic conditions. We define for each rule
d ∈ D its associated concave and monotone utility function
Γd ,u(ku) : R

2 → R [14]. The selected utility function Γd ,u
takes as input the KPI vector ku for user u ∈ Ut and claims
its priority to be served at TTI t. Globally, if the same utility
Γd is used for all active users at each TTI t, the KPI vector k
satisfies its requirements k̄ in a certain measure. The proposed
flexible RRM scheduler is able to properly choose the utility
function Γd at each state in order to increase the number of
TTIs when k satisfies k̄.

At the packet scheduler level, B ∗ Ut ranking values are
calculated at each TTI in the metrics calculation block, as indi-
cated in Fig. 1. The allocation of RBs involves the selection
for each RB b ∈ B, the user with the highest priority calcu-
lated according to the selected utility function Γd ,u . Then, a
proper Modulation and Coding Scheme (MCS) is assigned for
the set of allocated RBs of each selected user at each TTI.

A. Problem Formulation

The aim of the proposed solution is to apply at each
TTI, the best scheduling rule d ∈ D so that as many as
possible KPI parameters k[t] will respect their requirements
k̄[t]. Alongside the simple resource allocation problem, the
proposed optimization problem to be solved is more chal-
lenging since the rule assignment is required at each TTI,
such as:

max
x ,y

∑

d∈D

∑

u∈Ut

∑

b∈B
xd ,u [t ] · yu,b [t ] · Γd ,u(ku [t ]) · γu,b [t ],

s.t . (1)

∑
u

yu,b [t ] ≤ 1, b = 1, . . . ,B , (1.a)
∑

d
xd ,u [t ] = 1, u = 1, . . . ,Ut , (1.b)

∑
u

xd∗,u [t ] = 1, d∗ ∈ D, (1.c)
∑

u
xd⊗,u [t ] = 0, ∀d⊗ ∈ D\d∗, (1.d)

xd ,u [t ] ∈ {0, 1}, ∀d ∈ D,∀u ∈ Ut , (1.e)

yu,b [t ] ∈ {0, 1}, ∀u ∈ Ut ,∀b ∈ B, (1.f)

where, γu,b [t ] is the achievable rate of user u ∈ Ut for RB b ∈
B at TTI t, being calculated as: γu,b [t ] = N bits

u,b [t ]/0.001 [15],

where, N bits
u,b [t ] is the maximum number of bits that could be

sent if RB b ∈ B would be allocated to user u ∈ Ut . According
to [15], N bits

u,b [t ] is determined as follows: a) at each TTI, the
Channel Quality Indicator (CQI) is received for each RB b ∈ B
and user u ∈ Ut ; b) a MCS scheme for each RB b ∈ B and
UE u ∈ Ut is associated based on CQI; c) using a mapping
table N bits

u,b [t ] is determined based on MCS.
In the maximization problem, xd ,u [t ] is the scheduling rule

assignation variable (i.e., xd ,u [t ] = 1 when the scheduling
rule d ∈ D is assigned to user u ∈ Ut , and xd ,u [t ] = 0,
otherwise). The RB allocation variable is yu,b [t ] = 1 when
the RB b ∈ B is allocated to user u ∈ B, and yu,b [t ] = 0,
otherwise. When yu,b [t ] = 1, user u ∈ Ut is selected such
that u = argmax [Γd ,i (ki [t ]) · γi ,b [t ]], where i ∈ Ut . The
same procedure is repeated for all RBs from B, until the RBs
allocation is finished at TTI t. The constraints in (1.a) indicate
that at most one user is allocated to resource RB b ∈ B (if the
data queue is empty and the scheduling rule does not consider
this aspect). One RB cannot be allocated to more than one user,
but one user can get more than one allocated RB. Constraints
in (1.b) associate for each user a single scheduling rule, and
the constraints in (1.c) and (1.d) indicate that the same rule
d∗ ∈ D is selected for the entire set of active users at TTI t.

The solution to the optimization problem in (1) aims to
find at each TTI the best scheduling decision xd ,u [t ] and
resource variable yu,b [t ] for all users u ∈ Ut and RBs b ∈ B
such that the utilization of resources B is fully exploited and
the satisfaction of objectives O is maximized. Although the
PDR objective is correlated with the packet delay, we pro-
pose a novel strategy in such a way that: (a) Delay-based
Non-congested Case: the delay requirements can be satis-
fied for most of the active users if proper rules are applied
at each TTI; thus, delay minimization represents the primary
objective; (b) Delay-based Congested Case: may appear when
the KPI vector ko1 [t ] = {ko1,1[t ], ko1,2[t ], . . . , ko1,Ut

[t ]}
is not able to reach the delay requirements anymore
and then, we aim to minimize the PDR KPI vector
ko2 [t ] = {ko2,1[t ], ko2,2[t ], . . . , ko2,Ut

[t ]}; in this case, PDR
minimization is the primary objective.

The proposed solution is able to detect both cases by consid-
ering the multi-objective performance measure or the reward
value which is reported at each TTI by the RRM entity.

B. Problem Solution

The constraints in (1.e) and (1.f) make the optimization
problem combinatorial. The rule assignment and RBs alloca-
tion must be jointly performed in order to keep the linearity of
the problem. Moreover, the scheduler has to disseminate which
objective to follow according to the delay-based congested
and non-congested cases. To solve such a complex aggregate
problem, we propose the use of RL framework that is able
to interact with the RRM scheduler as indicated in Fig. 1.
The RL controller learns to take proper scheduling decisions
based on momentary network conditions. This stage is enti-
tled learning. Then, the exploitation stage evaluates what the
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controller has learned. Both learning and exploitation stages
are managed by a central controller. In order to deal with
the optimization problem complexity and large input state, the
RL controller engine requires the use of neural networks. In
the learning stage, the neural networks are adapted to output
better scheduling decisions. The RL algorithms indicate here
different ways of updating the NN weights. In Section III,
the preliminary elements of RL framework are presented and
Section IV elaborates the insights of the RL controller.

III. PRELIMINARIES ON RL FRAMEWORK

The RL framework is used to solve the stochastic and multi-
objective optimization problem by learning the approximation
of policy of rules that can be applied in real time scheduling
to improve the multi-objective satisfaction measure. At TTI
t, the RL controller observes the current state and takes an
action. At TTI t + 1, a new scheduler state is observed and
the reward value is calculated to evaluate the performance of
the action performed in the previous state. The reward function
together with the scheduler state enhance the decision of the
RL controller on the delay-based congestion or non-congestion
phases. The previous state, previous action, reward, current
state, current action are stored in the Markov Decision Process
(MDP) module at the level of RL controller, as shown in Fig. 1.
The RL controller explores many state-to-state iterations to
optimize the approximation of the best scheduling decisions.

We use neural networks to approximate the scheduling rule
selection at every momentary state. With each scheduling rule,
we associate a neural network for its approximation. Instead of
using a single neural network to represent all scheduling rules
at once, we propose a distributed architecture of NNs in order
to reduce the framework complexity. At each state, the set of
NNs provides D output values. In the learning stage, the action
selection block may choose to improve or to evaluate the NNs
outputs according to some probabilities. If the evaluation step
is chosen, then the scheduling rule with the highest NN output
is selected. Otherwise, the improvement step selects a random
rule. The NN weights are updated at each TTI based on the
tuple stored in MDP and the type of RL algorithm. During the
exploitation, only the evaluation steps are applied.

A. Scheduler State Space

Let us define the finite and measurable set for the scheduler
state space as S = SU ∪ SC , where SU and SC are the
uncontrollable and controllable sub-spaces, respectively. The
uncontrollable sub-space SU cannot be predicted whereas SC

evolves according to the selected rules at every TTI. Let us
further define the instantaneous scheduler state at TTI t as
a vector: s[t] = [c[t], z[t]], where s[t ] ∈ S, c[t ] ∈ SC and
z[t ] ∈ SU . The uncontrollable elements at TTI t, z ∈ SU

are: CQI reports, number of active users at TTI t, the arrival
rates in data queues and the vector of KPI requirements k̄[t ].
The controllable sub-state at TTI t, c ∈ SC is denoted by
c = [k, λ, k, q], where λ[t ] = [λ1, λ2, . . . , λUt

] is the vector
of user data rates being scheduled, k[t ] = [k1, k2, . . . , kUt

]
comprises the differences between the momentary KPI values
ko,u and their requirements k̄o,u , and q[t ] = [q1, q2, . . . , qUt

]

is the vector of queue lengths. For each user u ∈ Ut , the
controllable elements ku [t ] = [ko,u − k̄o,u ], enable the RL
controller to notify when objectives {o1, o2} ∈ O are satisfied.

B. Action Space

We define the finite action set as A = {a1, a2, . . . , aD},
where D is the number of scheduling rules. When the RL
controller selects action a[t] = d at TTI t, the RBs allocation
is performed and the system moves into the next state s′ =
s[t + 1] ∈ S according to the following transition function:

c′(d) = f (s, d), (2)

where c′(d) = [k′(d), λ
′
(d), k

′
(d), q

′
(d)] ∈ SC is the expected

controllable set at TTI t + 1 when applying the scheduling
rule a[t] = d in state s[t ] ∈ S. The new state s′ ∈ S is obtained
based on the uncontrollable elements z′ = z[t + 1] ∈ SU .

C. Reward Function

As per the original definition [10], the reward represents the
expected goodness of applying action a[t] = d in state s ∈ S:

r(s, d)
(def)
= E[Rt+1|s[t ] = s, a[t ] = d ], (3)

where Rt+1 is the reward value calculated at TTI t + 1.
Theorem 1: For any action a[t] = d applied in state s[t] = s,

the reward function will depend on controllable elements from
the current and next states, such as: r(s, d) = r(c′(d), c, d).

Proof 1: The proof is provided in Appendix A.
The role of Theorem 1 within the RL framework aims

to simplify the reward function calculation and to eliminate
the dependency on uncontrollable CQIs. In the absence of
Theorem 1, additional pre-processing steps are necessary to
compress the CQI sub-space, which in fact, increases the
complexity of the entire RL framework.

The reward function can be further simplified if we consider
that, at TTI t + 1, the future controllable elements are already
known, and consequently, we can say that, c′ = c′(d). Then,
the proposed reward function is calculated as follows:

r
(
c′, c

)
=

∑2

n=1
δon · ron

(
c′on

, con

)
, (4)

where δon ∈ R[0,1] represents the reward weights, where δo1+
δo2 = 1, con = [kon , λ, kon

, q] and kon
= [kon ,u−k̄on ,u ]. The

weights δon must stay constant during the entire learning stage
to ensure the convergence of the learned policies [10]. Each
sub-reward function in (4) is calculated based on:

ron

(
c′on

, con

)

=
{

1,
{
r+
on

(
c′on

)
, r+

on
(con )

}
= 1

r+
on

(
c′on

) − r+
on

(con ), otherwise.
(5)

The reward expressed above shows the temporal differ-
ence in performance for delay and PDR objectives. The
proposed sub-reward functions r+

on
: R

4·Ut → R are deter-
mined according to: r+

on
(con ) = 1/Ut · ∑Ut

u=1 r−on
(con ,u),
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where the controllable vector for user u ∈ Ut is con ,u =
[kon ,u , λu , kon ,u , qu ] and,

r−on

(
con ,u

)
=

{
1 − kon ,u

kon ,u
, kon ,u ≥ 0, {qu , λu} 	= 0,

1, otherwise.
(6)

Basically, when both QoS requirements of all users are sat-
isfied, the reward is 1. Otherwise, the rewards are moderate
(r ≥ 0) or punishments (r < 0). We set the delay requirements
k̄o1 at lower values than initially proposed by 3GPP [16]. In
this way, the scheduler is able to provide much lower packet
delays than the conventional scheduling approaches.

D. Value and Action-Value Functions

Let us define π : S × A → [0, 1] the policy function that
maps states to distributions over the action space [17]. In the
context of our scheduling problem, we denote the stochastic
policy π(d | s) as the probability of action a[t] = d being
selected by π in state s[t] = s [17], that is defined as follows:

π(d | s) = P[a[t ] = d |s[t ] = s]. (7)

Additionally, we define the value function V π : S → R that
measures the value of state s underlying π and defined as [17]:

V π(s)
(def)
= Eπ

[∑∞
t=0

γtRt+1|s[0] = s
]
, (8)

where, (1) the process (γtRt+1; t ≥ 0) is the accumulated
reward value being averaged from state to state by the discount
factor γ ∈ [0, 1]; (2) s[0] is considered as random such that
P(s[0] = s) > 0 holds for every s ∈ S. The second condition
makes the expectation in (8) defined for all states in S. If we
also assume that the first action a[0] of the whole process is
randomly chosen such that P(a[0] = d) > 0 holds for all rules
d ∈ D while the following action decisions follow π, then the
action-value function Qπ : S ×A → R is defined as [17]:

Qπ(s, d)
(def)
= Eπ

[∑∞
t=0

γtRt+1|s[0] = s, a[0] = d
]
. (9)

Both value and action-value functions defined in (8) and (9),
respectively, consider as argument the general state represen-
tation as defined in Section III-A. These functions need to be
redefined and adapted to our scope since the reward in (4)
takes as input the consecutive controllable sub-states.

Theorem 2: For any policy π that optimizes (1), we have
the new value function Kπ : SC × SC → R determined as:

Kπ(
c′, c

)
= Eπ

[∑∞
t=1

γt−1Rt |c[1] = c′, c[0] = c
]
, (10)

and Jπ : SC ×SC ×A → R is the new action-value function:

Jπ(
c′, c, d

)
= Eπ

[∑∞
t=1

γt−1Rt |c[1] = c′, c[0]

= c, a[1] = d
]
, (11)

where the new policy π[d | (c′, c)] states the probability of
selecting rule d ∈ D when the current state is (c′, c).

Proof 2: The proof can be found in Appendix B.
According to Theorem 2, the proposed RL framework learns

based on the consecutive controllable states, while eliminating
the dependency on other un-controllable elements. This is in

fully congruence with Theorem 1 with no need for additional
steps to compress the CQI uncontrollable states.

By considering the relations in (8), (10) and (9), (11),
respectively, the value and action-value functions can be
decomposed according to the temporal difference principle:

Kπ(
c′, c

)
= r

(
c′, c, d

)
+ γ · Kπ(

c′′, c′
)
, (12a)

Jπ(
c′, c, d

)
= r

(
c′, c, d

)
+ γ · Kπ(

c′′, c′
)
, (12b)

where c′′ = c[t+2] and the reasonings behind above equations
are given in Appendix C.

The optimal value K ∗(c′, c) of state (c′, c) ∈ SC × SC

is the highest expectable return when the entire schedul-
ing process is started from state (c′, c). Then, function
K ∗ : SC ×SC → R is the optimal value function determined
as: K ∗(c′, c) = maxπKπ(c′, c) [17]. Similarly, the optimal
action-value J ∗(c′, c, d) of pair (c′, c, d) represents the highest
expected return when the scheduling process starts from state
(c′, c) and the first selected action is a[1] = d. Consequently,
J ∗(c′, c, d) : SC × SC × A → R is the optimal action-
value function. If we consider that the RL controller acts as
optimal at each state, the selection of the best scheduling rule
is achieved according to the following equation:

d∗ = argmax
d ′∈D

[
π
(
d ′ | (

c′, c
)]
. (13)

In this case, both value and action-value functions are optimal,
and relations (12a) and (12b), respectively, become:

K ∗(c′, c
)

= r
(
c′, c, d

)
+ γ · K ∗(c′′, c′

)
, (14)

J ∗(c′, c, d
)

= r
(
c′, c, d

)
+ γ · K ∗(c′′, c′

)
. (15)

From Appendix B, it can be easily seen that K ∗(c′′, c′) =
maxd ′∈DJ ∗(c′′, c′, d ′). Then, both optimal value and action-
value functions can be derived as follows:

K ∗(c′, c
)

= r
(
c′, c, d

)
+ γ · max

d ′∈D
J ∗(c′′, c′, d ′), (16)

J ∗(c′, c, d
)

= r
(
c′, c, d

)
+ γ · max

d ′∈D
J ∗(c′′, c′, d ′). (17)

According to the target values calculated based on (14)-(17)
that we would like to achieve at each TTI, the RL framework
parameterizes the non-linear functions. Each of these functions
defines the type of RL algorithm. We consider the evaluation
of each RL algorithm in order to find the best policy for each
parameterization schemes used to compute the on-line PDRs.

For our stochastic optimization problem, the optimality of
value and action-value functions is not guaranteed. Then, we
aim to find the approximations of these functions, such that:
K̄ ∗(c′, c) ≈ K ∗(c′, c) and J̄ ∗(c′, c, d) ≈ J ∗(c′, c, d) for all
d ∈ D. Also, the instantaneous state (c′, c) ∈ SC ×SC needs
to be pre-processed to reduce the RL framework complexity.

IV. PROPOSED RL FRAMEWORK

A. State Compression

We aim to solve the dimensionality and variability prob-
lems of controllable states by eliminating the dependence
on the number of active users Ut . This is fundamental for
our RL framework, since the input state needs to have a
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Fig. 2. Proposed RL Framework.

fixed dimension in order to update the same set of non-linear
functions.

Theorem 3: At each TTI, the controllable states c ∈ SC

can be modeled as normally distributed variables.
Proof 3: We group the controllable elements as follows: c =

{ko1 , ko2 , λ, ko1
, ko2

, q}, where c = {cn}, n = {1, . . . , 6}.
Each component depends on the number of users, such as:
cn = {cn,u}, where u = {1, 2, . . . ,Ut}. When n is fixed,
each element cn,u can be normalized at each TTI t as follows:

ĉn,u = cn,u/

(
1/Ut ·

∑Ut

u′ cn,u′

)
. (18)

By expanding (18) and fractioning between the pairs, we get
the following recurrence relation:

ĉn,u =
(
cn,u · cn,u+1/ĉn,u+1

)
. (19)

The normalized set ĉn = {ĉn,1, ĉn,2, . . . , ĉn,Ut
}, ∀n is nor-

mally distributed, if and only if, each element ĉn,u is a product
of random variables. Equation (19) proves the theorem.

We use the means and standard deviations to represent
the distributions of the normalized controllable and semi-
controllable elements based on maximum likelihood estima-
tors [18]. Let us define the mean function μ(ĉn) : R

Ut →
[−1, 1] and the standard deviation function σ(ĉn) : R

Ut →
[−1, 1]. Based on maximum likelihood estimators [18], these
functions are defined as follows:

μ(ĉn) = 1/Ut ·
∑Ut

u=1
ln

(
ĉn,u

)
, (20a)

σ(ĉn) =

√
1/Ut ·

∑Ut

u=1

[
ln

(
ĉn,u

) − μ(ĉn)
]2
. (20b)

The same principle for calculating the normalized values and
the mean and standard deviations is used for next-state con-
trollable elements ĉ′ = {ĉ′n}. To simplify the controllable state
representation, we define the 24-dimensional vector as v ∈ Ŝ ,
where v = [μ(ĉ′n ), σ(ĉ′n ), μ(ĉn ), σ(ĉn )], and n = {1, . . . , 6}.

B. Approximations of Value and Action-Value Functions

Figure 2 shows the insights of the proposed RL framework.
Alongside a number of D neural networks used to approxi-
mate the action-value functions, we need an additional neural

network to represent the value function. We approximate
the optimal action-value functions by defining the function
J̄ ∗ : Ŝ × A → R. Also, we define K̄ ∗ : Ŝ → R as a func-
tion approximator for the optimal value function. Then, the
non-linear representations of these functions are defined as
follows:

K̄ ∗(v) = h(θt , ψ(v)),

J̄ ∗(v, d) = hd
(
θdt , ψ(v)

)
, (21)

where, {h, h1, h2, . . . , hD} are the neural networks used to
approximate the value and action-value functions, respectively;
ψ(v) is the feature vector, and {θ, θ1, θ2, . . . , θD} is the set
of weights that has to be tuned.

The NN structure is based on two off-line parameterizations:
the number of layers and the number of nodes for each layer.
Let us define L the number of NN layers and Nl the number
of nodes for each layer l ∈ {1, 2, . . . ,L}. If the number of
nodes for the input and output layers are known in advance
(i.e., N1 = 24, and NL = 1), the number of hidden layers
L − 2 and the number of nodes for each hidden layer must
be determined in advance based on a priori testing.

The weights {θ, θ1, θ2, . . . , θD} are used to interconnect the
nodes from layer to layer. Let us consider Wl = {wb,m , b =
1, . . . ,Nl ,m = 1, . . . ,Nl+1} the matrix of weights between
layers l and l + 1. The total number of weights that has to be
tuned in the learning stage between layers l and l + 1 is (Nl +
1) × Nl+1. The compressed controllable states v are passed
from layer to layer and they go through a set of non-linear
transformations. The output of layer l, becomes [19]:

v(l+1) = ψl+1

(
WT

l × v
(l)
+

)
, (22)

where, v
(l)
+ is the biased input state and ψl+1 is the activation

function of layer l + 1. On the largest scale, the compressed
state is propagated through the entire NN according to [19]:

K̄ ∗(v) = ψL

(
WT

L−1 · · · · · ψl+1

(
WT

l · · · · · ψ2

(
WT

1 · v
)))

.

(23)

Similarly, the controllable state v ∈ Ŝ is forwarded through
all state-action NNs {h1, h2, . . . , hD}. The activation func-
tion ψl = (ψl ,1, ψl ,2, . . . , ψl ,Nl

) is element-wise and the same
function is considered for all nodes. The main idea is to learn
D + 1 vectors of weights, but at each TTI t, only two NNs are
updated (θt , θd∗t ), and a[t] = d∗ is the rule applied in state v.

For NN learning purposes, we consider the current state
as v′ = [μ(ĉ′′n ), σ(ĉ′′n ), μ(ĉ′n ), σ(ĉ′n )] ∈ Ŝ and v ∈ Ŝ as a
previous state. We aim to update the set of weights {θt , θd∗t }
by reinforcing the error values that are able to evaluate the
performance of selecting the output of NN d∗ ∈ D in state
v ∈ Ŝ when the current state is v′ ∈ Ŝ. Let us define the value
error function e : R[−1,1] → R[−1,1] and the action-value error
function of NN d ∈ D as ed : R[−1,1] → R[−1,1]. These errors
are calculated at each TTI based on the following equations:

et
(
θt−1, v

′, v
)

= KT (
v′, v

) − K̄ ∗(v), (24a)

ed
t

(
θdt−1, v

′, v
)

= JT (
v′, v, d

) − J̄ ∗(v, d), (24b)
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where, KT : Ŝ × Ŝ → R is the target value function defined
based on (14) or (16) and JT : Ŝ × Ŝ ×A → R is the target
action-value function calculated according to (15) or (17).

Both errors {et , e
d
t } are back-propagated through the neu-

ral networks from layer to layer. Let us define the vector of
value errors E(l) = [e(l)

1 , e
(l)
2 , . . . , e

(l)
Nl

] being back-propagated
to the output of layer l ∈ {1, 2, . . . ,L}. These errors are
back-propagated based on the following equation [19]:

E(l) = WT
l × ΔT

(
Ψ′

l+1,E
(l+1)

)
, (25)

where, Ψ′
l+1 = [ψ′

l+1,1, ψ
′
l+1,2, . . . , ψ

′
l+1,Nl+1

] is the deriva-

tive set and Δ[Ψ′
l+1,E

(l+1)] = [ψ′
l+1,1 · e

(l+1)
1 , ψ′

l+1,2 ·
e
(l+1)
2 , . . . , ψ′

l+1,Nl+1
· e(l+1)

Nl+1
]. By using (25), the errors are

back-propagated from layer to layer and the weights are
updated each time based on the gradient descent principle.
Then, the weight w t

b,m that interconnects node b = 1, . . . ,Nl
of layer l to node m = 1, . . . ,Nl+1 of layer l + 1 at TTI t is
updated according to the following formula [19]:

w t
b,m = w t−1

b,m + ηt · v (l)
b · ψ′

l+1,m · e(l+1)
m , (26)

where ηt is the learning rate, v (l)
b is the state element and

ψ′
l+1,m is the derivative function on m ∈ {1, 2, . . . ,Nl+1}.

C. RL Algorithms

A set of RL algorithms is used to update the approxi-
mations of optimal value and action-value functions. Among
all RL algorithms, only five are investigated and used to
reinforce the corresponding errors and optimize the NNs
{h, h1, h2, . . . , hD} based on dynamic network and traffic
conditions.

QV-learning [20] combines the value and action-value func-
tions to build its policy by considering a two-step updating
process based on (14) and (15), respectively:

KT (
v′, v

)
= r(v, d∗) + γ · K̄ ∗(v′

)
, (27a)

JT (
v′, v, d∗) = r(v, d∗) + γ · K̄ ∗(v′

)
, (27b)

where, a[t] = d∗ is the action applied in the previous state
v ∈ Ŝ and r(v, d∗) is the reward function calculated based
on (4). The errors are calculated according to (24a) and (24b).

QV2-learning [21] keeps the same form of target functions
as exposed in (27) with the only difference that, the value
function error is back-propagated as follows:

et
(
θt−1, v

′, v
)

= KT (
v′, v

) − J̄ ∗(v, d∗). (28)

QVMAX-learning [21] sets the error calculations and the
target function JT (v′, v, d∗) similar to the QV-learning. The
only difference is the target value function, such as:

KT (
v′, v

)
= r(v, d∗) + γ · max

d ′∈D
J̄ ∗(v′, d ′). (29)

QVMAX2-learning [21] is a combination of QV, QV2
and QVMAX algorithms. The target action-value function
JT (v′, v, d∗) is defined similar to QV-learning as in (27b),
the target value function KT (v′, v) is determined according
to the QVMAX rule as in (29), the value error et (θt , v′, v)

is similar to QV2 and the action-value error ed∗
t (θd

∗
t , v′, v) is

determined similar to QV-learning.
For the Actor Critic Learning Automata (ACLA) [22], at

each TTI, the value function K̄ ∗ is updated according to (27a)
and its error is determined based on (24a). If the value error
et (θt , v′, v) is positive, the action d∗ ∈ D in state v ∈ Ŝ was a
good choice and the probability of selecting that action in the
future for the same approximated state should be increased.
Otherwise, the probability of selecting that action is decreased.
The target action-value function is determined as follows:

JT (
v′, v, d∗) =

{
1, if e

(
θt−1, v

′, v
) ≥ 0,

−1, if e
(
θt−1, v

′, v
)
< 0. (30)

The action selection function from Fig. 2 plays a central role
in the learning stage. The trade-off for improvement/evaluation
steps is decided by ε−greedy or Boltzmann distributions. If
the ε−greedy is decided to be used, the action a[t + 1] in
state v′ is selected based on the following policy [19]:

π
(
d | v′

)
=

{
ε
(d)
t ε ≥ εt ,

hd
(
θdt , ψ

(
v′

)]
ε < εt ,

(31)

where ε(d)
t is a random variable and εt is time-based parame-

ter that decides when the improvement or the evaluation step
is applied. If εt is very low, then we have more improve-
ments steps. When εt gets higher values, the RL controller
aims to exploit the output of NNs more. However, the ε−
exploration is not able to differentiate between the potentially
good and worthless actions for given momentary states. The
Boltzmann exploration takes into account the values of NNs
at each TTI, in which, the actions with higher NNs values
should have higher probabilities to be selected and the oth-
ers will be neglected. The potentially good actions for the
momentary state v′ ∈ Ŝ are detected by using the following
formula [19]:

π
(
d | v′

)
=

exp
[
hd

(
θdt , ψ

(
v′

))
/τ

]

∑D
d ′=1 exp

[
hd ′(

θd
′

t , ψ(v′)
)
/τ

] , (32)

where τ is the temperature factor that sets how greedy the
policy is. For instance, when τ → 0, the exploration is more
greedy, and thus, the NNs with the highest outputs are selected.
When τ → ∞, the action selection becomes more random,
and thus, all actions have nearly the same selection probabil-
ities. Regardless of the type of exploration that is used, the
action is selected at each TTI according to (13). Algorithm 1
summarizes the introduced concepts and reasonings.

V. SIMULATION RESULTS

The proposed framework was implemented in a RRM-
Scheduler C/C++ object oriented tool that inherits the
LTE-Sim simulator [15]. For the performance evaluation,
an infrastructure of 10 Intel(R) 4-Core(TM) machines with
i7-2600 CPU at 3.40GHz, 64 bits, 8GB RAM and 120 GB
HDD Western Digital storage was used. The entire frame-
work was simulated using the same network conditions for
both learning and exploitation stages. The obtained results
are averaged over 10 simulation runs and the STandard
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Algorithm 1 RRM Scheduler Based on RL Algorithms
1: for each TTI t
2: observe state (c′′, c′) ∈ SC × SC , apply the compression
3: functions based on (18), (19), (20a), and (20b), get v′ ∈ Ŝ.
4: recall the previous state and action (v, d), d ∈ D and store
5: the actual state v′ ∈ Ŝ at the controller MDP level
6: calculate reward r(v, d∗) based on (4), (5) and (6).
7: forward propagate states (v′, v) on K̄ ∗(·) = h(θt−1, ψ(·))
8: according to (22) and (23)
9: forward propagate state v on J̄∗(v, d) = hd (θdt−1, ψ(v)),

10: d ∈ D based on (22) and (23)
11: if QV algorithm
12: calculate value error et (θt−1, v

′, v) - (27a) and (24a)
13: calculate error edt (θdt−1, v

′, v) - (27b) and (24b)
14: if QV2 algorithm
15: calculate value error et (θt−1, v

′, v) - (27a) and (28)
16: calculate error edt (θdt−1, v

′, v) - (27b) and (24b)
17: if QVMAX algorithm
18: calculate value error et (θt−1, v

′, v) - (29) and (24a)
19: calculate error edt (θdt−1, v

′, v) - (27b) and (24b)
20: if QVMAX2 algorithm
21: calculate value error et (θt−1, v

′, v) - (29) and (28)
22: calculate error edt (θdt−1, v

′, v) - (27b) and (24b)
23: if ACLA algorithm
24: calculate value error et (θt−1, v

′, v) - (27a) and (24a)
25: calculate error edt (θdt−1, v

′, v) - (30) and (24b)
26: back propagate error et (θt−1, v

′, v) based on (25)
27: update weights θt−1 based on (26)
28: back propagate error edt (θdt−1, v

′, v) based on (25)

29: update weights θdt−1 based on (26)
30: // act based on the learned policy
31: apply d∗ = argmaxd ′∈D[π(d ′ | v′)] based on (31) or (32).
32: end for

Deviations (STDs) are analyzed in order to prove the veracity
of proposed policies. In order to study the impact of the online
PDR in the learned policies, different averaging settings are
considered.

The aim of the simulations is two-fold: (a) to study the
learning performance of five different RL algorithms (QV,
QV2, QVMAX, QVMAX2, ACLA) under different traffic
types, varying window size, objectives, and dynamic traffic
conditions; (b) to study the performance of the proposed RL-
based framework and learned policies vs. classical scheduling
rules under different objectives, traffic types and network
conditions. For the purpose of the performance evalua-
tion, the proposed RL-based framework considers the set of
state-of-the-art scheduling rules consisting of EXPonential 1
(EXP1) rule [7], EXPonential 2 (EXP2) and LOGarthmic
(LOG) strategies [8] and Earliest Deadline First (EDF)
rule [9].

A. Parameter Settings

For the purpose of the simulations, our system model con-
siders the bandwidth of 20 MHz (100 RBs) and the ARQ
scheme with maximum 5 retransmissions. Packets failing to
be transmitted within this interval are declared lost. Since
the packet loss rate is related more to the network condi-
tions, we focus only on the ratio of dropped packets which
is related more to scheduler performance. The online PDR

KPI ko2,u [t ] for each user u ∈ Ut is calculated as follows:
ko2,u [t ] = (

∑T
z=t N̄u [z − t ])/(

∑T
z=t Nu [z − t ]), where Nu

is the number of total transmitted packets and N̄u is the num-
ber of dropped packets being caused by higher packet delays
than those ones imposed by 3GPP. Parameter T is the time
window that is calculated as the ratio between the total num-
ber of active users Ut and the maximum number of users Nm

s
that can be scheduled within one TTI. Then, T = ρ·[Ut/Nm

s ],
where [ · ] is the integer part and ρ is the windowing factor.
The role of ρ is to ensure the PDR satisfaction when Ut is
variable. For instance, we have noticed that, when Ut > Nm

s ,
low windowing factors ρ = [5.5, 200] provides satisfactory
performance for the PDR objective. When Ut <= Nm

s , the
windowing factor can be increased such as ρ = [200, 400] in
order to have larger horizons of time when dropping the pack-
ets, while the PDR objective is still satisfied. When ρ > 400,
the PDR performance is seriously degraded. However, based
on more general traffic settings (Ut is variable during learn-
ing and exploitation stages), we would like to find the most
convenient range of ρ such that both packet delay and PDR
objectives can be maximized. In this sense, we vary the win-
dowing factor in ρ = {5.5, 100, 200, 400} in order to cover a
wider range for both aforementioned cases.

In the learning stage, the packet delay and PDR con-
straints are updated at each 1000 TTIs in the range of
k̄o1,u [t ] = {50, 100, 150, 200, 250, 300}ms and k̄o2,u [t ] =
{10−3, 10−4, 10−5, 10−6}, respectively. When the delay
exceeds any of these requirements from k̄o1,u [t ], the pack-
ets are dropped and declared lost. To obtain better results for
the satisfaction of delay, we aim to impose stricter require-
ments, such that: ¯̄ko1,u [t ] = υ · k̄o1,u [t ] and υ = 0.9. Packets
exceeding these limits are not discarded, and the proposed
policies are able to apply the best rule so that the PDR can
be much improved. In order to increase the probability of
reaching the terminal states (r(c′, c) = 1) for very high traf-
fic load and low latency requirements, the delay sub-rewards
{r+

o1
(c′o1

), r+
o1

(co1)} in (5) are modified as follows:

r+
o1(co1)

=

{
1,

[
1/Ut ·

∑Ut
u=1 r−on

(con ,u )
]
≥ κ,

1/Ut ·
∑Ut

u=1 r−on
(con ,u ), otherwise,

(33)

where, κ ∈ [0, 1] indicates the acceptable limit such that, for
(1 − κ)% of users that are in outage of delay requirements,
the delay reward is still maximized. For our simulations, we
impose κ = 0.9. When the global reward value is calculated,
the same level of importance is given for both delay and PDR
objectives, and consequently: δo1 = δo2 = 0.5.

In both learning and exploitation stages, the number of
active users is changed every 1000 TTIs in the domain of
Ut = [15, 120] in order to better illustrate the superiority
of the proposed policies. The user speed is 30 kmph and the
mobility model is considered to be random direction for both
learning and exploitation stages. For the interference model,
we consider a cluster with 7 cells, and the simulation model
runs only on the central cell, with others being used to pro-
vide the interference levels. The training stage runs for 500s
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TABLE I
PACKET SCHEDULER PARAMETERS

TABLE II
CONTROLLER PARAMETERS

by using the same user-network-application conditions for all
five RL algorithms. The exploitation stages are launched in 10
different simulations of 95s each, and the results are averaged.

CBR and VBR traffic types are considered to model a wide
range of applications (e.g., video, VoIP, FTP, Web browsing)
with different traffic characteristics. Thus, the CBR traf-
fic is generated based on the following set of arrival rates
λi [t ] = {32, 64, 128, 256, 512, 1024} randomly generated at
each 1000 TTIs (for all active users). The VBR traffic is
generated following a Pareto distribution for packet size and
geometric distributions for the arrival rates [18]. The obtained
policies can provide very high degrees of generalizations, and
thus they can be applied to realistic environments. The remain-
ing set of parameters for the RRM packet scheduler is listed
in Table I.

B. Optimization of RL Controller

When optimizing the controller, our aim is to find the best
parameterization scheme (learning rates, discount factors and
exploration parameters) that minimizes the NNs output errors
(et , e

1
t , e

2
t , . . . , e

D
t ) for a given duration of the learning stage.

Different configurations are simulated and Table II illustrates
the most suited parameters for each considered RL algorithm.

The parameterization of neural networks (L,Nl ), l ∈
{1, 2, . . . ,L} constitutes another important aspect that has to
be considered before launching the learning stage. When the
neural network is too flexible (high number of layers and

hidden nodes), the complexity is higher, the learning speed
slower, and there is a risk to overfit the input state in the
sense that, the function approximator will represent not only
the interest data, but also the noise in the scheduler state [19].
When the neural network is inflexible (insufficient number of
layers and hidden nodes), the system complexity is lower,
the RL framework can learn faster, and parts of the sched-
uler state space may not be represented by the approximator.
As a consequence, we get poor generalizations and the func-
tion approximator is said to underfit the input state [19]. In
both under-fitting and over-fitting cases, the state error starts
to increase inexplicably at a certain point in the learning
stage. We carefully tested different NN configurations, such
as L = {3, 5, 7}, where the number of neurons for each
hidden layer was varied in the interval of {50,100,150,200}.
Considering under-fitting, over-fitting and system complexity
trade-off, and based on preliminary simulations we found out
that L = 3 and N2 = 100 are enough to represent the state
space for delay and PDR objectives. For each simulation set-
ting, we considered the same topology of neural networks (i.e.,
the same numbers of layers, nodes and activation functions).
The activation functions for the input and output layers are lin-
ear, whilst for hidden nodes, the activation function is tangent
hyperbolic [18].

C. Learning Performance

This subsection presents the learning performance of the five
considered RL algorithms in terms of the mean percentage of
TTIs under punishments and moderate rewards and for varying
windowing factor, different objectives (e.g., delay only, PDR
only, and both delay and PDR) and different traffic classes
(e.g., CBR and VBR). By punishment we understand that the
reward is negative at TTI t, such that − 1 < r < 0 while in case
of moderate reward we have 0 ≤ r < 1. Thus, for this case,
we consider the mean percentage of TTIs under punishments
and moderate rewards, such as p(−1 < r < 0; 0 ≤ r < 1).
Then, p1(−1 < ro1 < 0; 0 ≤ ro1 < 1) is the mean per-
centage of TTIs under punishments and moderate rewards
for the delay objective; similarly p2(−1 < ro2 < 0; 0 ≤
ro2 < 1) is the mean percentage of TTIs corresponding to
PDR objective; and, p12(−1 < r < 0; 0 ≤ r < 1) is
the mean percentage of TTIs for both delay and PDR objec-
tives. Figures 3 (a)-(f) illustrate the performance of considered
RL algorithms in the exploitation stage when considering the
mean percentage of TTIs under moderate rewards and punish-
ments for each traffic class, objective and varying windowing
factor.

Figures 3 (a)-(c) show the performance of the RL algorithms
in terms of mean percentage of TTIs under punishments and
moderate rewards for varying windowing factor and objec-
tives, for the CBR traffic only. We notice that in the case
of delay objective, the percentages p1(−1 < ro1 < 0; 0 ≤
ro1 < 1) remain relatively constant for each of the RL
algorithms when varying the windowing factor. However,
it can be observed that ACLA performs better than other
choices for ρ = {5.5, 100} while QVMAX and QVMAX2
perform better for ρ = {200, 400}. When considering the
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Fig. 3. Learning Performance: Punishment and Moderate Rewards.

PDR objective only (Fig. 3 (b)), the QV policy accumulates
the least amount of punishments and moderate rewards for
ρ = {5.5} and the QVMAX2 algorithm learns the best when
ρ ∈ {100, 200, 400}. However, when both delay and PDR
objectives are considered (Fig. 3 (c)), ACLA and QVMAX2
achieve the lowest mean percentage p12(−1 < r < 0; 0 ≤
r < 1) when ρ ∈ {5.5, 100, 200} and QVMAX2 is the
best choice for ρ = 400. We observe that the STD of
p2(−1 < ro2 < 0; 0 ≤ ro2 < 1) becomes higher as ρ
increases. This shows that if very large windows are used in
the PDR computations, the policies show their limitations in
applying appropriate scheduling rules that can maximize the
satisfaction of PDR requirements.

The learning performance when scheduling VBR traffic is
highlighted in Figs. 3 (d)-(f). QV, QVMAX2 and ACLA per-
form best for the delay objective (Fig. 3 (d)) for ρ = 5.5.
For ρ = {100, 200}, QVMAX, QVMAX2 and ACLA pro-
vide a good performance, while QVMAX minimizes p1(−1 <
ro1 < 0; 0 ≤ ro1 < 1) when ρ = 400. The PDR objective
(Fig. 3 (e)) satisfaction is achieved for larger periods of time
when ρ = 5.5 by the QV policy. However, when increasing
the windowing factor, ρ = {200, 400}, the best candidates are
ACLA, QVMAX2 and QV2. When combining both delay and
PDR objectives (Fig. 3 (f)), the following policies perform the
best: QV, QVMAX2, ACLA for ρ = 5.5, ACLA, QVMAX,
QVMAX2 for ρ = 100, and QVMAX for ρ = {200, 400}.

Looking at the impact of different traffic classes, by com-
paring Figs. 3(c) and 3(f), we notice that the RL policies can
learn better under VBR traffic, since the STDs are consider-
ably reduced when compared with the CBR traffic. Moreover,
as indicated by (33), we aim to maximize the reward when
90% of active users achieve their delay requirements. In this
sense, the RL policy that shows the best performance in
terms of learning performance, may not be the best option

when we measure the network performance for 100% satisfied
users.

D. Policies’ Performance

The objective of this subsection is to analyze if the con-
sidered RL policies are able to ensure the best performance
when measuring the objective satisfaction for all active users.
In this sense, we measure the mean percentage of TTIs when
100% of active users satisfy: a) the delay requirements only
(p1(100%)); b) the PDR requirements only (p2(100%)); and
c) both, delay and PDR requirements (p12(100%)).

The results are listed in Table III for each considered RL
algorithm under a varying windowing factor, different objec-
tives and traffic classes. The top scheduling policies under each
objective and for each windowing factor are highlighted. When
the results obtained in Table III are compared with Fig. 3, a
discrepancy between {p1(100%), p2(100%), p12(100%)} and
1 − {p1(−1 < ro1 < 0; 0 ≤ ro1 < 1), p2(−1 < ro2 < 0; 0 ≤
ro2 < 1), p12(−1 < r < 0; 0 ≤ r < 1)} can be observed
in the sense that even if some RL approaches are able to
provide good performance when minimizing the percentage
of TTIs with punishment and moderate rewards, the mean
percentage of TTIs when all active users are satisfied is seri-
ously degraded. For example, in Fig. 3(d), for ρ = 5.5, ACLA
aims to minimize the number of punishments and implicitly to
maximize the number of maximum rewards when 90% of users
are satisfied, whereas, in Table III, QV policy is the best option
when measuring p1(100%). Similarly, in Fig. 3(f), for ρ = 5.5,
ACLA and QVMAX2 policies are the best options to minimize
the amount of punishment and moderate rewards. However, in
Table III, the QV policy is the one that maximizes p12(100%).
Moreover, in Fig. 3(f), QVMAX achieves similar performance
as ACLA and QVMAX2 when ρ = 100. In Table III, its
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TABLE III
POLICIES PERFORMANCE FOR CBR AND VBR TRAFFIC TYPES

performance is seriously degraded since p12(100%) = 12.2,
which is three times less than ACLA.

These discrepancies are obtained since some policies prefer
to select those scheduling rules that aim to keep some users in
outage in terms of packet delay for longer periods. In Table III,
the results show that more than 10% of feasible TTIs for the
entire set of RL algorithms and windowing factors are lost
when scheduling VBR traffic.

Other discrepancies refer to the performance differences
between windowing factors and traffic types. For example, for
CBR traffic in the case of the PDR objective when the value of
the windowing factor is increased (e.g., 200, 400), QVMAX2
achieves the best performance. Whereas, in the case of VBR
traffic, QV2 performs the best under the same settings. Even
if the same network and traffic conditions are used when train-
ing the NNs under different RL algorithms, the sequence of
these conditions differs from one setting of ρ to another. This
explains the performance variability of the obtained RL poli-
cies under ρ ∈ {5.5, 100, 200, 400} when scheduling CBR
and VBR traffic. However, it can be concluded that ACLA
is a better option for shorter time windows in PDR com-
putations, whereas the QVMAX and QVMAX2 algorithms
can learn better for much longer time windows used in PDR
computations.

E. Comparison With State-of-the-Art Strategies

The aim of this subsection is to analyze the performance
of the proposed RL-based framework and compare it against
the conventional scheduling rules, such as EDF, LOG, EXP1,
and EXP2. Through this performance evaluation we want
to show that by using only one scheduling rule it cannot
fully satisfy the objectives under dynamic network conditions
and traffic types. Thus, the proposed RL-based framework
will select the most suitable scheduling rule to be applied
at each TTI based on the current network conditions. The
performance of the proposed RL-based framework and the
best policies from Table III are compared against other state-
of-the-art scheduling solutions in terms of mean percentage
of TTIs when the active users are satisfied in percentage of

q% = {90, 92, 94, 96, 98, 100} for different objective targets,
such as p1(q), p2(q), p12(q). The results are collected for
CBR and VBR traffic under the three objectives and varying
windowing factor and listed in Fig. 4.

Looking at the delay objective only, it can be easily
observed that the proposed framework is able to outperform
the classic scheduling rules in terms of p1(100%) for both
cases of CBR (Fig. 4(a)) and VBR traffic (Fig. 4(d)). When
scheduling the CBR traffic, more than 10% of feasible TTIs
are gained by the proposed framework under all windowing
factor settings. Calling the appropriate scheduling rule at each
TTI enables all active users to respect the lower delay bound.
A degradation of p1(q) can be observed when scheduling the
VBR traffic with ρ = 5.5 for q [%] = {90, 92, 94}. This is
because the main purpose of the obtained policy is to min-
imize the mean delay for all users with the minimum STD
delay values. Some scheduling rules aim to keep some users
in outage for longer periods by increasing the STD of packet
delays.

The PDR objective for both traffic types under an increasing
windowing factor ρ, p2(q) decreases and the results′ variation
becomes larger (Figs. 4(b) and 4(e)). However, the proposed
framework works best when q [%] = {90, 92, 94, 96, 98, 100}.

When maximizing the percentages of feasible TTIs when
all active users are satisfied in terms of both packet delay and
PDR requirements, the proposed framework performs the best
as seen in Figs 4(c) and 4(f). By selecting appropriate schedul-
ing rules for different traffic loads, network conditions and
QoS requirements, the proposed framework gains more than
15% of p12(100%) when compared with classical scheduling
rules for the CBR traffic type and the windowing factor of
ρ = {5.5, 100, 200, 400}. For the VBR traffic, the proposed
framework indicates a gain of about 10%. This is because
some packets have larger sizes when compared with CBR.

F. General Remarks

The performance of the RL controller depends on the fol-
lowing factors: the type of RL algorithm, the input data set
being used in the training stage, data processing, controller
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Fig. 4. Exploitation Performance: Percentages of TTIs when Delay, PDR, and both Delay and PDR Objectives are Satisfied.

parameterization and the learning termination condition. If the
sequence of provided input data is not similar, the performance
of the RL algorithms can differ as we observed in Table III.
The training data has to be carefully chosen in order to per-
mit the controller to explore as many states as possible and
to avoid the local minima problems. The input observations
must be pre-processed before applying to the RL controller in
order to avoid the dependency for some parameters that may
change over time, such as the number of active users. The con-
troller setting has to be determined a priori by using extensive
simulation results. The NN configuration for our scheduling
model makes use of L = 3 layers, where: N1 = 24, N2 = 100,
N3 = 1. Finally, the learning termination condition indicates
when the training stage should be stopped. For our simula-
tions, the termination condition is performed after 500s, the
moment of time when the errors for all five RL algorithms are
nearly the same and the weights of NNs are saved.

VI. RELATED WORK

One key aspect in obtaining optimal performance within
the radio access network is the dynamically scheduling of
the limited radio resources. Different radio resource alloca-
tion strategies and scheduling rules have been proposed in the
literature to optimize the distribution of radio resources among
different users by considering the dynamic channel conditions
as well as QoS requirements. For example, the EXP1 rule
proposed in [7] is able to enhance the PDR at the cost of
throughput degradation when scheduling video streaming ser-
vices. Two rules EXP2 and LOG proposed in [8] are able
to minimize the overflow of data queues when compared to
Modified Largest Weighted Delay First (MLWDF). However,
the MLWDF rule provides poor PDR performance when CBR

traffic is scheduled [23]. The EDF strategy in [9] outperforms
MLWDF, LOG, EXP1, and EXP2 in terms of PDR with delay
degradation when higher real-time traffic load is scheduled.

RL has been widely used in RRM decision-making prob-
lems, such as: inter-cell interference coordination [24], self-
organizing networks [25], energy savings [26], Adaptive
Modulation and Coding selection [27], radio resource allo-
cation and packet scheduling [28]–[30]. In many RRM
optimization problems, the states (network conditions) and
actions (RRM decisions) are continuous and multidimensional
variables that increase the complexity of RL algorithms.
Different approaches are proposed to avoid these drawbacks.

Clustering methods are used in [31] to convert the continu-
ous state space into its discrete representation. In [26], the
discrete state space is achieved through fuzzy logic mech-
anism by using linguistic variables. Another solution is to
integrate RL algorithms with artificial Neural Networks, which
are able to approximate non-linear functions that map the
continuous state into desired scheduling decisions for the
proportional-fair rule parameterization [29], [30]. However,
some pre-processing tools are needed to compress the NN
input state dimension, and consequently, to speed-up the
learning process.

A form of compression is considered in [28], where the
modulation and coding scheme is adapted based on aver-
age CQI reports received from all users. This method can
be used only in wide-band CQI reporting scenarios, becom-
ing automatically unfeasible when the sub-band reporting is
required. For the self-organizing mechanism proposed in [25],
the state compression considers only the conflicting param-
eters with neighboring cells. Some approaches consider the
division of the multidimensional state into smaller sub-states
to be approximated as indicated in [32].
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VII. CONCLUSION

This paper proposes a flexible RRM packet scheduler which
is able to adapt based on dynamic scheduling conditions and
to enable QoS provisioning. The proposed approach makes
use of Reinforcement Learning to determine, for each instan-
taneous scheduler state, a better scheduling rule to be applied.
Additionally, an innovative technique that compresses the con-
trollable momentary state such that the dependency on the
number of users is eliminated is also introduced. Through
extensive simulation results we have demonstrated that differ-
ent RL approaches behave differently under varying network
conditions and system settings. However, we show that by
using the proposed framework together with the best RL poli-
cies in the exploitation stage, the proposed RRM scheduler
outperforms the classical scheduling rules in terms of both
packet delay and PDR objectives.

As part of future work, we plan to investigate the proposed
RL framework as a possible solution for the optimization prob-
lems that consider non-orthogonal multiple access schemes as
well as heterogeneous traffic conditions with strict QoS.

APPENDIX A
PROOF OF THEOREM 1

The reward function is decomposed as indicated in (34)
when starting with the definition in (3), where, the (∗) property
indicates that, the uncontrollable state z[t ] = z ∈ SU can

r(s, d)
(3)
= E[Rt+1|s[t ] = s, a[t ] = d ]

(2)
= E[Rt+1|c[t + 1] = f (s, d), s[t ] = s, a[t ] = d ]

= E

[
Rt+1|c[t + 1] = c′(d), c[t ] = c, z[t ] = z, a[t ] = d

]

(∗)
= E

[
Rt+1|c[t + 1] = c′(d), c[t ] = c, a[t ] = d

]

= r
(
c′(d), c, d

)
. (34)

be reproduced if the controllable elements {c, c′(d)} ∈ SC

from the actual and future scheduler states are known. For
instance, by having the tuple {λ, λ′(d)}, the effective SINR
can be reproduced, and consequently, the CQI reports for each
user can be approximated. The KPI requirements at TTI t k̄
are determined based on the controllable elements {c, c′(d)}.
The arrival bit rates in data queues at TTI t are obtained
based on the differences between consecutive sizes of queues
q′ and q. The queue sizes denote here the number of bits
from each user’s queue being impacted only by the schedul-
ing decision. The arriving bits in data queues depend on the
traffic type and are included in the uncontrollable state space.
Also, the number of active users Ut at TTI t can be easily
determined by simply setting λu = 0 for those users in the
IDLE state.

APPENDIX B
PROOF OF THEOREM 2

We develop the initial value function as shown in (35) at the
top of the next page. By starting with the definition from (8),
the sum of expectations keeps the same value when consider-
ing the transition function of controllable elements from (2).

The (∗) property has the same meaning as in Equation (34).
At TTI t + 1 when c′(d) = c′, we obtain the value function
representation as shown in (10). The action-value function is
decomposed as shown below:

Qπ (s, d)
(9)
= Eπ

[∑∞
t=0

γtRt+1|s[0] = s, a[0] = d
]

(2)
= Eπ

[ ∞∑

t=0

γtRt+1|c[1] = f (s, d), s[0] = s, a[0] = d

]

= Eπ

[ ∞∑

t=0

γtRt+1|c[1] = c′(d), c[0] = c, z[0] = z, a[0] = d

]

(∗)
= Eπ

[∑∞
t=0

γtRt+1|c[1] = c′(d), c[0] = c, a[0] = d
]

= J π
(
c′(d), c, d

)
. (36)

The action-value is developed in (36). At TTI t+1 when c′(d) =
c′, the new action-value function is defined as follows:

J π
(
c′, c, d ′) = Eπ

[∑∞
t=1

γt−1Rt |c[1] = c′,

c[0] = c, a[1] = d ′, a[0] = d
]

(37)

(∗∗)
= Eπ

[∑∞
t=1

γt−1Rt |c[1] = c′,

c[0] = c, a[1] = d ′
]
,

where, (∗∗) stands with the MDP property.

APPENDIX C
FUNCTION TRANSITIONS

We want to find a relationship for value and action-value
functions in between two consecutive controller states such as
(c′, c) and (c′′, c′). The state function in (35) is reloaded and
developed in reverse way as shown in (38) at the top of the next
page. The property (∗, 2) indicates the MDP property in which
the current state depends only on the previous one but not on
all the previous versions. Also, the transition of controllable
elements at TTI t = 2 is determined according to (2). The prop-
erty (∗∗) indicates in fact that we are in state (c′′, c′) and we
would like to update Jπ(c′, c, d) and Kπ(c′, c), so the uncon-
trollable state z[2] ∈ SU is known. The relation (34*) reveals
the property elaborated in Appendix A and the uncontrollable
elements z[2] = z′′ ∈ SU can be reconstituted if the set of
elements c[2] = c′′ ∈ SC and c[1] = c′ ∈ SC are known by
the RL controller. The transition for action-value function can
be developed similarly to the value function Kπ(c′, c) with the
only difference being that, when updating function Jπ(c′, c, d)
at TTI t = 2, a different function Jπ(c′′, c′, d ′′) may be used in
this computation since d ′′ = argmaxq∈D[Jπ(c′′, c′, q)]. This
is revealed in fact by the dynamic programming property that
permits the action-value function to be updated at each TTI
according to the best scheduling rule in that state.
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V π (s)
(8)
=

∑

d∈D

{
Eπ

[ ∞∑

t=0

γtRt+1|s[0] = s, a[0] = d

]
· π(d | s)

}
(2)
=

∑

d∈D

{
Eπ

[ ∞∑

t=0

γtRt+1|c[1] = f (s, d), s[0] = s, a[0] = d

]
π(d | s)

}

=
∑

d∈D

{
Eπ

[ ∞∑

t=0

γtRt+1|c[1] = f (s, d), c[0] = c, z[0] = z, a[0] = d

]
· π(d | s)

}

(∗)
=

∑

d∈D

{
Eπ

[ ∞∑

t=0

γtRt+1|c[1] = c′(d), c[0] = c, a[0] = d

]
· π

[
d |

(
c′(d), c

)]}

= Eπ

[∑∞
t=0

γtRt+1|c[1] = c′(d), c[0] = c
]

= Kπ
(
c′(d), c

)
. (35)

Kπ
(
c′, c

)
=

∑
d′∈D

Jπ
(
c′, c, d ′) · π[

d ′ | (
c′, c

)]
=

∑
d′∈D

Eπ

[∑∞
t=1

γt−1Rt |c[1] = c′, c[0] = c, a[1] = d ′
]
· π[

d ′ | (
c′, c

)]

= r
(
c′, c, d ′) + γ ·

∑

b′

∑

d′′
Eπ

[ ∞∑

t=2

γt−2Rt−1|c[1] = c′, c[0] = c, z[2] = b′, z[1] = z′, a[2] = d ′′, a[1] = d ′
]
· π[

d ′′ | (
c′′, c′

)]

(∗,2)
= r

(
c′, c, d ′) + γ ·

∑

b′

∑

d′′
Eπ
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t=2

γt−2Rt−1|c[2] = f
[(

c′, b′), d ′], c[1] = c′, z[2] = b′, a[2] = d ′′
]
· π

[
d ′′ |

(
c′′(d′′), c

′
)]

(∗∗)
= r

(
c′, c, d ′) + γ ·

∑
d′′ Eπ

[∑∞
t=2

γt−2Rt−1|c[2] = c′′(d′′), c[1] = c′, z[2] = z′′, a[2] = d ′′
]
· π

[
d ′′ |

(
c′′(d′′), c

′
)]

(34∗)
= r

(
c′, c, d ′) + γ ·

∑
d′′ Eπ

[∑∞
t=2

γt−2Rt−1|c[2] = c′′(d′′), c[1] = c′, a[2] = d ′′
]
· π

[
d ′ |

(
c′′(d′′), c

′
)]

= r
(
c′, c, d ′) + γ ·

∑
d′′∈D

Jπ
(
c′′(d′), c
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· π

[
d ′′ |

(
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(
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in this paper are those of the authors and do not represent the
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