
A Distributed Control Plane For Path Computation Scalability in
Software-Defined Networks

Mohammed Amine Togou1, Djabir Abdeldjalil Chekired2, Lyes Khoukhi2, and Gabriel-Miro Muntean1

1Performance Engineering Laboratory, School of Electronic Engineering, Dublin City University
2ICD/ERA, University of Technology of Troyes

1{mohammedamine.togou, gabriel.muntean}@dcu.ie
2{djabir abdeldjalil.chekired, lyes.khoukhi}@utt.fr

Abstract— Given the shortcomings of traditional networks,
Software-Defined Networking (SDN) is considered as the best
solution to deal with the constant growth of mobile data
traffic. SDN separates the data plane from the control plane,
enabling network scalability and programmability. Initial SDN
deployments promoted a centralized architecture with a single
controller managing the entire network. This design has proven
to be unsuited for nowadays large-scale networks. Though
multi-controller architectures are becoming more popular, they
bring new concerns. One critical challenge is how to efficiently
perform path computation in large networks considering the
substantial computational resources needed. In this paper, we
propose DiSC, a distributed high-performance control plane
for path computation in large SDNs. It endorses a hierarchical
structure to distribute the load of path computation among
different controllers, reducing therefore the transmission over-
head. In addition, it uses node parallelism to accelerate the
performance of path computation without generating high con-
trol overhead. Simulation results show that DiSC outperforms
existing schemes, including the most recent ones, in terms of
path computation time, path setup latency and end-to-end delay.

I. INTRODUCTION

With the widespread adoption of smartphones and the
global endorsement of 3G/4G technologies, mobile data traf-
fic has skyrocketed. According to Cisco Visual Networking
Index (VNI) [1], the global mobile data traffic grew from
4.4 exabytes per month in 2015 to 7.2 exabytes per month
in 2016 and is expected to reach 49 exabytes per month
by 2021. Given the inherent characteristics of nowadays
networks (i.e., extremely expensive, manually configured
and lacking dynamic scalability), handling the constantly
growing data traffic while ensuring high service quality is
becoming complex and very laborious.

SDN is a concept that was proposed to improve network
performance and management. It decouples the control plane
from the data plane to enable their independent evolution [2].
This separation brings about numerous advantages, including
high flexibility, programmability and high scalability. The
first proposed SDN systems (e.g., NOX [3] and Flood-
light [4]) deploy a single centralized entity, called the con-
troller, responsible for managing traffic flows and monitoring
switches of the entire network. Despite their simplicity and
ease of implementation, these systems have failed to meet the

performance requirements of nowadays large-scale networks
[5]. The reason is twofold: 1) with the increase of data traffic,
the centralized controller will eventually get overwhelmed,
leading to performance degradation; and 2) any minor disrup-
tion to the controller’s activity may jeopardize the availability
of the entire network.

Various techniques have been proposed to mitigate these
shortcomings. For instance, [6] and [7] used multiple cores
to enhance the Input/Output performance and enabled par-
allelism to support large networks. [8] and [9] redistributed
part of the flow requests among switches to alleviate the con-
troller’s load. Alternatively, having a physically-distributed
control plane is the approach gaining ground among SDN
research community. It consists of partitioning the network
into multiple areas, each of which is managed by a distinct
controller. ONIX [10], ONOS [11], Google’s B4 [12] and
Espersso [13] are examples of SDN multi-controller archi-
tecture.

In a distributed control plane, each controller maintains
topology information,including the set of switches assigned
to it (i.e., association information), the set of links between
them (i.e., link view) and the path between all-pairs of its
respective switches (i.e., path view). Failing to synchronize
this information, namely link and path views, among all
controllers may lead to inconsistent path computation results.
This is referred to as the synchronization problem. Yet,
synchronizing topology information among all controllers
may incur high overhead considering the exorbitant number
of control messages to be exchanged, particularly when
topology changes are frequent [14]. This might impact the
efficiency of path computation, which is pivotal to the
performance of various SDN applications [15].

In this paper, we propose DiSC, a distributed control
plane that seeks to enhance the performance of path com-
putation in multi-controller SDNs. DiSC embraces a hierar-
chical architecture that partitions the network into multiple
domains, each of which is subdivided into several areas.
Each area/domain is managed by a distinct controller. In
addition, DiSC defines three types of path computation,
based on the destination’s location, and identifies the role
of each controller in every one of them. This is to ensure
rapid and scalable path computation without generating high

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

transmission overhead.
The rest of this paper is organized as follows. Section

II surveys some related works. Section III presents our
proposed architecture and section IV describes the simulation
settings and results. Section V concludes the paper.

II. RELATED WORK

Few approaches have been proposed to optimize the
performance of path computation in SDN. For instance,
Kouicem et al. [16] proposed a path computation algo-
rithm for centralized SDNs to optimize flow transmission
in WAN environment. It deploys BGP-LS [17] to collect
information regarding the underlying WAN (e.g., link states
and traffic information) and forward it to the centralized
controller. Based on a client-server architecture, the cen-
tralized controller uses the received information to respond
to applications’ path computation requests. Synchronization
between the controller and the applications is carried out via
exchanging report messages.

Cho et al. [18] described a cloud-based approach that
enables SDN controllers to delegate the task of path com-
putation to an application, which can be part of a controller
or installed on an external server. This application collects,
maintains and updates network information within its corre-
sponding domain. When a path is to be established among
multiple domains, each application computes the shortest
path within its respective domain and shares it with the
other applications of the involved domains. The shortest path
is then computed using the backward recursive technique
(i.e., path computation starts from the destination and goes
backwards till the source node is reached).

Qui et al. [19] proposed Paracon, a parallel control plane
that seeks to scale up path computation in SDN. ParaCon
endorses a strong consistency synchronization for association
and link view information (i.e., all controllers must share this
information immediately whenever a topology change has
occurred). However, it adopts an eventual consistency policy
(i.e., allowing for a delay in synchronization) along with an
asynchronous parallel algorithm to synchronize path view
information among all controllers. This is to reduce message
transmission for path computation, minimizing therefore the
overall synchronization overhead and enhancing the path
computation performance.

Despite their performance, these solutions have different
limitations. While [16] suffers from the bottleneck and single
point of failure problems, both [18] and [19] might still
incur high control overhead due to their flat architecture (i.e.,
controllers should maintain the global topology information),
especially in large networks where path requests are recur-
rent. This has motivated us to propose DiSC, a distributed
control plane that aims at improving the scalability and the
performance of path computation via:

• Endorsing a hierarchical structure that partitions the
network in multiple domains, each of which is further
divided into several areas. Each area is managed by a
single controller.

• Disallowing topology information to be shared horizon-
tally and allowing only part of it (i.e., path view) to be
shared vertically .

• Enabling parallelism at the level of controllers in the
same or different tiers to accelerate the process of path
computation.

III. DISTRIBUTED AND SCALABLE CONTROL PLANE

This section presents DiSC, the proposed distributed con-
trol plane that seeks to improve the scalability and perfor-
mance of path computation in multi-controller SDNs without
incurring high transmission overhead. First the DiSC’s over-
all architecture is described. Then how paths are computed
and updated in DiSC is outlined. Finally, some security and
reliability issues are discussed and how DiSC addresses them
is presented.

A. The Overall Architecture

Fig. 1 illustrates the DiSC architecture. It has three major
components: data plane, topology information abstraction
and control plane.

1) Data Plane: includes switches and links. When a
switch (i.e., source) needs to forward a data packet to
another switch (i.e., destination), it sends a path request
to its respective edge controller. Based on the destination’s
location, the edge controller can: a) construct the path view,
compute the best path and update the source flow table; or
b) forward the path request to the domain controller.

2) Topology information abstraction: Both link and path
views are abstracted as graphs and are represented using
adjacency matrices. The link view consists of switches and
their links, mirroring the underlying data plane. The path
view, on the other hand, illustrates the weights for all-pairs
best paths, within an area or a domain, at a given time.
Weights are application-dependent and can involve one or
multiple metrics such as available bandwidth, delay and jitter.

3) Control Plane: is physically distributed over three
tiers, each of which is in charge of performing specific tasks,
as described in the following subsections.

Edge Controllers: are the entry point to the control
plane. They are deployed near end users to enhance the
quality of service of various applications. Instead of relaying
application requests to remotely deployed controllers, edge
controllers can process them locally, enabling therefore quick
response times while reducing the computation overhead.
Each edge controller is responsible for managing its own
area. This includes maintaining and updating topology in-
formation and updating flow tables of its assigned switches.

Domain Controllers: are responsible for managing their
respective domains. This includes supervising edge con-
trollers and assisting them in accomplishing specific tasks.
Each domain controller maintains an inter-area gateway
table (IAGT) that keeps track of the switches connecting
neighboring areas (see Fig. 1). Each entry in IAGT includes
the switch’s address, the address of the edge controller to
which it is assigned (i.e., the area), its status (i.e., normal
or special) and the set of inter-area gateways to which it is

Edge
Controller 2

Edge
Controller 1

Edge
Controller 1

Domain 1
Controller

Domain 2
Controller

Domain 3
Controller

Centralized
Controller

Domain 1 Domain 2 Domain 3

Area 1

C
o

n
tr

o
l P

la
n

e

Data Plane

Inter-area gateways

Inter-domain gateways

Inter-area links

Inter-domain links

Area 2 Area 1 Area 2 Area 1 Area 2

Edge
Controller 2

Edge
Controller 2

Edge
Controller 1

…

………

Fig. 1. DiSC architecture. The control plane is made of 3-tiers: edge controller, domain controller and centralized controller.

connected. The use of the status field is described in Section
III.D. Domain controllers use IAGT to construct the path
view of their respective domain.

The Centralized Controller: is responsible for supervising
the domain controllers and helping them carrying out their
duties. It maintains an inter-domain gateway table (IDGT)
that contains the list of switches connecting neighboring
domains (see Fig. 1). Each entry in IDGT keeps track of:
the switch’s address, the address of the domain controller to
which it is assigned and the set of inter-domain gateways
to which it is connected. IDGT is used by the centralized
controller to construct the network’s path view. This will be
described in detail in the next section.

Note that the DiSC architecture can adapt to network
scalability in two ways: 1) by adding new domain and edge
controllers (i.e., horizontal scalability) to accommodate the
new deployed switches; and 2) by adding a new controller,
labeled SDN controller, on top of the centralized controller
(i.e., vertical scalability). Under these circumstances, the
network will be partitioned into regions. Each region is
managed by a centralized controller and is divided into
multiple domains, each of which is subdivided into several
areas. The SDN controller will be responsible for supervising
and assisting the centralized controllers.

B. Path Computation

Assume that a source switch, labeled source, needs to
forward data packets to a destination switch, labeled des-
tination. Based on DiSC, there exists three path computation
possibilities: intra-area, inter-area and inter-domain.

1) Intra-area path computation: both the source and the
destination are within the same area. In this case, the source

sends a path request to the area’s edge controller. This latter
deploys an optimized version of the Bellman-Ford algorithm
[20] to construct the area’s path view. It then selects the best
path between the source and the destination considering the
application’s requirement (e.g., shortest path, shortest delay,
highest bandwidth) and updates the flow tables of all the
switches in the selected path.

2) Inter-area path computation: the source and the desti-
nation are within the same domain, but in different areas. In
this case, the source sends a path request to its respective
edge controller. Given that the destination is not within
its respective area, the edge controller forwards the path
request to the domain controller. When received, the domain
controller localizes the area to which the destination belongs
and requests edge controllers managing the areas between
the source and the destination to construct and transmit their
path views (i.e., this is done in parallel). These views are
combined with the information in IAGT to construct the path
view between the source and the destination. The domain
controller then selects the best path, taking into account the
application’s requirements. Finally, it updates the flow tables
of all the switches in the selected path with the support of
the involved edge controllers.

3) Inter-domain path computation: The source and the
destination are located in different domains. In this case, the
source sends a path request to its respective edge controller,
which forwards it to the domain controller. Unable to find
the destination in its domain, the domain controller forwards
the path request to the centralized controller. Once received,
the centralized controller localizes the domain to which
the destination belongs and requests the domain controllers
monitoring the domains between the source and the desti-

nation to construct and transmit their path views (i.e., by
combining IAGT information with path views received from
edge controllers). This is done also in parallel. These views
are then combined with the information in IDGT to construct
the path view between the source and the destination and to
select the best path. The centralized controller then updates
the flow tables of all the switches in the selected path with
the support of all involved domain and edge controllers.

C. Path Update

Whenever a topology change occurs (e.g. a link between
two switches becomes unavailable or link weights are modi-
fied), the edge controller is the first to get notified. It starts by
updating the link view and computing the new path view of
its respective area using Algorithm 1, which is based on the
centralized algorithm in [19]. Each edge controller maintains
a queue, labeled Qu, to store the switches that need to be
checked for path weight update. The edge controller starts
by dequeuing the node at the head of the queue, labeled x,
and checks whether the total weights of existing paths can
be optimized when including x. If yes, x’s neighbors are
added to the queue; otherwise, the edge controller dequeues
the next node in the queue. This process continues until the
queue becomes empty.

Algorithm 1 Path Update Algorithm
Input: Link View, Qu

Output: Path view
1: while Qu not empty do
2: x← Qu.head()
3: if path weights are optimized by including x then
4: Update wieghts in path view matrix
5: Qu ← x′sneighbors
6: else
7: x← Qu.head()

Edge controllers will transmit the new path view to the
domain controllers and the centralized controller only when
there are either inter-area or inter-domain path computation
requests. In this way, we reduce the transmission overhead
needed to reflect the changes in topology. Indeed, instead
of involving all or most of the controllers in the network
whenever a topology change occurs (i.e., the case of [19]
and [18]), DiSC can implicate at most h − 1 controllers,
where h denotes the number of tiers in the architecture. This
implies that DiSC can incur at most h− 1 transmissions per
topology change.

D. Security and Reliability

In order to mitigate the problem of isolated areas due
to edge controllers’ failure (i.e., hardware faults or security
attacks), DiSC compels inter-area gateways with the status
field set to special (i.e., the blue shaded boxes in Fig. 1) to
maintain the link view of their respective areas. When an
edge controller becomes unavailable, the domain controller
will use IAGT to reach one of these gateways to retrieve the
link view of the disconnected area. The domain controller

will then assign the switches of that area to another edge
controller. This latter will update its link view to accommo-
date the new assigned switches and compute a new path view
for its respective area.

In case a domain controller becomes unavailable, the
centralized controller uses IDGT to reach the edge controllers
within the disconnected domain and retrieve the link views
of their respective areas. These areas are then assigned
to one or multiple domain controllers, allowing for load
balancing between different domains. The involved domain
controllers will then update their IAGTs to accommodate
the new inter-area gateways. By doing so, DiSC can ensure
service continuity while strengthening the system’s security.

IV. PERFORMANCE EVALUATION

In this section, we present a simulation-based evaluation
of DiSC and compare it to the state of the art solutions: POX
[21], a widely used controller in SDN research community,
and ONOS v1.3, a popular and stable distributed OpenFlow
controller, ParaCon [19].

A. DiSC Implementation

We implemented DiSC using virtual machines (VM) as
controllers, each one is implemented on Dell OptiPlex 7050
(Intel Core i5 CPU 2.71 GHz with 08G RAM). We have
10 VMs, each of which is used as a controller. Three DisC
versions were implemented:
• DiSC-One(i): consists of one domain and a variable

number of areas i (i.e., from 2 to 8).
• DiSC-Two: consists of two domains, each of which

contains two areas (i.e., two edge controllers). Both
domains are managed by one centralized controller.

• DiSC-Three: consists of three domains. The first has one
area, the second has two while the third has four areas.
All domains are managed by one centralized controller.

The data plane topology for each area is provided by Mininet.
Each controller is based on a modified POX where we
replace the model of the path computation by our proposed
path computation mechanism.

B. Simulation Results and Analysis

Fig. 2(a) depicts the path computation time with respect
to the number of switches in each area. We observe that
the path computation time increases with the increase in the
number of switches. We also observe that DiSC variants
incur the shortest path computation time compared to all
other schemes. For instance, DiSC-Three achieves an average
path computation time that is 133%, 169% and 180% shorter
than Paracon, ONOS and POX, respectively. Instead of
maintaining a global topology information (i.e., the case of
ParaCon and ONOS) and sharing it with all controllers, DiSC
compels edge controllers to sustain topology information of
their respective areas and share only part of it (i.e., path
view) with their respective domain controllers. In this way,
edge controllers can quickly compute the path view of their
areas while reducing the transmission overhead.

(a) (b) (c)

Fig. 2. Performance evaluation of the various schemes in terms of: a) path computation time; b) communication frequency; and c) end-to-end delay

Fig. 2(b) illustrates the communication frequency as a
function of the number of edge controllers. By communi-
cation frequency we mean the number of times that edge
controllers were solicited. We observe that the communica-
tion frequency decreases with the increase in the number of
controllers. This is rational since augmenting the number of
edge controllers implies fewer switches per area. We also
observe that DiSC-One outperforms ONOS (i.e., DiSC-one
incurs an average communication frequency that is 25%
lower than ONOS’s). This is because ONOS adopts a flat
architecture that requires each controller to inquire all the
other controllers to construct and maintain the network’s
global topology information. DiSC, however, defines three
path computation scenarios and involves only controllers that
are concerned. For instance, in case of an inter-area path
computation, DiSC compels edge controllers to compute the
path view of their respective areas and implicates domain
controllers to build the path view of the respective domains.
In this way, edge controllers do not become overwhelmed
and their resources can be used to handle new intra-area
path computation requests.

Fig. 2(c) shows the end-to-end delay as a function of
traffic load. We observe that except for DiSC-Three, the end-
to-end delay of all schemes increases with the increase in
traffic load. As expected, POX generates the highest end-to-
end delay since it uses a single centralized controller. Even
though ONOS and ParaCon are distributed multi-controller
architectures, they still incur high end-to-end delay. In fact,
both ONOS and ParaCon incur an average end-to-end delay
that is 130% and 143% higher than DiSC-Three’s. The
reason is that DiSC computes paths quickly compared to
the other schemes as it distributes traffic load over different
controllers according to the type of the path request (i.e.,
intra-area, inter-area and inter-domain) and allows for the
sharing of path views with upper-tier controllers only, there-
fore avoiding network congestion.

To examine the path computation scalability of DiSC
and ParaCon, we set up three distinctive topologies, as
illustrated in Table I. CERNET and USCarrier are provided
by Topology Zoo [22]. As the files of the two topologies were
in GML/GraphML format, we used Python and the iGraph
library to convert these files into an adjacency matrices and

TABLE I
SIMULATED TOPOLOGIES

Topology Node Link Diameter
CERNET 41 57 6
USCarrier 158 189 35

ScTop 600 30000 5

edge lists. We have also designed a scalable topology and
named it ScTop. While CERNET is a small topology with a
small diameter, USCarrier is a small topology with a large
diameter. ScTop is a large topology with a small diameter,
involving a massive number of switches.

Fig. 3 depicts the path setup latency with respect to the
number of path computation requests for both DiSC and
Paracon in the various topologies. We observe that the path
setup latency decreases with the increase in the number of
path computation requests. We also observe that ParaCon
incurs the highest path setup latency in all topologies. For
instance, ParaCon achieves an average path setup latency
that is 54%, 72% and 135% higher than DiSC-Three’s in
CERNET, USCarrier, and ScTop, respectively. The fact that
ParaCon requires all controllers to maintain the global topol-
ogy information makes its path computation performance
contingent to the graph’s diameter alongside the number of
switches and links in the network. Indeed, while ParaCon
performs as good as DiSC-Two when the diameter and
the size of the network are small (i.e., see Fig. 3(a)), its
performance is dreadful in large size networks with small
diameter (i.e., see Fig. 3(c)).

DiSC does not endure this problem as its variants incur a
stable path setup latency (i.e., see Fig. 3(c)). The reason is
threefold: 1) DiSC endorses a hierarchical multi-tier control
plane that requests controllers to maintain topology informa-
tion for their respective areas or domains only; 2) DiSC also
allows for path views to be shared with upper-tier controllers;
and 3) DiSC enables load balancing among controllers by
defining different types of path computation and involving
different controllers in each one of them. Observe that DiSC-
Two incurs a high path setup latency (i.e., 46%) compared
to DiSC-Three in CERNET. This is because DiSC-Three
has areas with smaller sizes, implying that edge controllers
can rapidly construct their path views. When the size of
these areas increases, DiSC-Two incurs an average path setup

(a) (b) (c)

Fig. 3. Path setup latency in terms of path computation requests in: a) CERNET topology; b) USCarrier topology; and c) Scalable topology

latency that is only 15% higher than DiSC-Three’s (i.e, see
Fig. 3(b)).

V. CONCLUSION

In this paper, we propose DiSC, a hierarchical and dis-
tributed control plane that improves the performance of
path computation in SDN. DiSC partitions the network into
domains, each of each is subdivided into areas. Each area is
managed by an edge controller and each domain is super-
vised by a domain controller. All controllers are responsible
for maintaining all or part of the topology information.
DiSC deploys a centralized controller to monitor the domain
controllers and to build the network’s path view. It also
defines three types of path computation and identifies the
role of each controller in every one of them. This is to
accelerate the path computation process, using parallelism,
and to balance the load (i.e., path computation request)
among all controllers. Simulation results show that DiSC
outperforms existing schemes in terms of path computation
time, path setup latency and end-to-end delay.

For future work, we will examine the performance of DiSC
in scenarios with significant traffic load. We are also planning
to consider scenarios where topology changes are recurrent
and propose a mechanism to quickly adapt to these abrupt
changes without the need for computing the paths once again.

ACKNOWLEDGEMENT

This work was supported by the European Union’s
Horizon 2020 Research and Innovation program under
Grant Agreement no. 688503 for the NEWTON project
(http://newtonproject.eu).

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast up-
date, 2016-2021 [white paper],” https://www.cisco.com/mobile-white-
paper-c11-520862.html, March 2017, accessed: 2018-04-05.

[2] F. Bannour, S. Souihi, and A. Mellouk, “Distributed sdn control:
Survey, taxonomy, and challenges,” IEEE Communications Surveys
Tutorials, vol. 20, no. 1, pp. 333–354, Firstquarter 2018.

[3] N. Gude et al., “Nox: Towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul.
2008.

[4] “Floodlight project,” http://www.projectfloodlight.org/floodlight/, ac-
cessed: 2018-03-05.

[5] R. Trestian, K. Katrinis, and G. M. Muntean, “Ofload: An openflow-
based dynamic load balancing strategy for datacenter networks,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp.
792–803, Dec 2017.

[6] A. Tootoonchian et al., “On controller performance in software-defined
networks,” in Proc. of the 2Nd USENIX Conference on Hot Topics
in Management of Internet, Cloud, and Enterprise Networks and
Services, ser. Hot-ICE’12, 2012, pp. 1–10.

[7] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A system for scalable
openflow control,” 2010.

[8] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 351–362, Aug. 2010.

[9] A. R. Curtis et al., “Devoflow: Scaling flow management for high-
performance networks,” in In ACM SIGCOMM, 2011.

[10] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. of 9th USENIX Conf. on Operating
systems design and implementation (OSDI’10), 2010.

[11] P. Berde et al., “Onos: Towards an open, distributed sdn os,” in
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14, 2014, pp. 1–6.

[12] S. Jain et al., “B4: Experience with a globally-deployed software
defined wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp.
3–14, Aug. 2013.

[13] K.-K. Yap et al., “Taking the edge off with espresso: Scale, reliability
and programmability for global internet peering,” in Proceedings of
the Conference of the ACM Special Interest Group on Data Commu-
nication, ser. SIGCOMM ’17, 2017, pp. 432–445.

[14] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct.
2007.

[15] M. Wichtlhuber, R. Reinecke, and D. Hausheer, “An sdn-based cdn/isp
collaboration architecture for managing high-volume flows,” IEEE
Transactions on Network and Service Management, vol. 12, no. 1,
pp. 48–60, March 2015.

[16] D. E. Kouicem, I. Fajjari, and N. Aitsaadi, “An enhanced path compu-
tation for wide area networks based on software defined networking,”
in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), May 2017, pp. 664–667.

[17] O. G. de Dios et al., “First multi-partner demonstration of bgp-ls
enabled inter-domain eon control with h-pce,” in 2015 Optical Fiber
Communications Conference and Exhibition (OFC), March 2015, pp.
1–3.

[18] H. Cho, J. Park, J.-M. Gil, Y.-S. Jeong, and J. H. Park, “An optimal
path computation architecture for the cloud-network on software-
defined networking,” Sustainability, vol. 7, no. 5, pp. 5413–5430,
2015.

[19] K. Qiu, S. Huang, Q. Xu, J. Zhao, X. Wang, and S. Secci, “Paracon:
A parallel control plane for scaling up path computation in sdn,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp.
978–990, Dec 2017.

[20] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[21] “Sdn hub, pox controller tutorials,” http://sdnhub.org/tutorials/pox/,
accessed: 2018-04-05.

[22] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, October 2011.

