
The Usability of Virtual Reality in On-line Education

Kristína Knapová1, Gregor Rozinaj2

 1 Faculty of Informatics and Information Technologies, Ilkovičova 2, 842 16 Bratislava 4, Slovakia
 2 Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia

1 xknapova.stuba.sk, 2 gregor.rozinaj@stuba.sk

Abstract - The game described in this article was created with the
aim to make learning more fun. The game is designed for
primary and secondary schools. In general, we can say that
technical departments are not attractive to these pupils. That's
why we created the game on this topic. We hope that this game
will help future college students to decide for the benefit of the
technical department. In the game we focused on programming
and specifically on the pointers.

Keywords – Virtual reality; Monster; Level; Pointers; Code

I. INTRODUCTION

The programmer's profession may seem tempting to many
students. Whether for interesting work or for high valuation.
But many will discourage the fact that it seems difficult.
Looking into the textbook of programming really discourages
many. It does not look as fun as it sounded at first. Our goal is
to create a game that will not deter pupils from programming,
but their attraction. We wanted to make the game as interesting
as possible. That's why we've also used virtual reality. We
think it will be interesting for pupils. Our game deals with the
theme of the C language. The game translates the pupils with
nine topics related to the pointers.

II. DESCRIPTION OF THE GAME

The game takes place in tropical rainforest and is divided
into nine levels. Each level refers to a part of pointers. In
addition, the following scenes are in the game: scene with
language, scene with introduction to the game, scene with help,
scene with instructions for each level, scene with score gained
on current level, scene with labyrinth, and final scene. The
game is based on a simple story with a little monster as the
main character. The evil inhabitants of the tropical forest
abducted monster’s two friends. The little monster can do
nothing else but go on a journey through the forest and find
them. She performs various tasks during her journey. For every
accomplished task she gets an instruction about place, where
she can find her friends. Tasks, of course, are relate to pointers.
The player helps to little monster by accomplishing these tasks.
After the last task, she finds herself in the scene where she has
to look for kidnapped friends. In this scene she will use the
instructions which she received during the journey. Due to this
instructions, the little monster can find her kidnapped friends.

III. DESCRIPTION OF LEVELS

The theme of the pointers is divided into nine parts in this
game. For each part, one level is done.

A. The program memory
For anyone who wants to understand the pointer, it's

important to understand the program's memory. The first level
is dedicated to this topic. To accomplish the task, the player
needs to know how the program memory works. Especially,
what is saved in which part of memory. At the beginning of the
level, the player receives a code sample. He has to remember it
so much as possible. He should know, about what the code
was. The sample will disappear after a while and the player
finds herself on the forest path. It is divided into three parts.
Each part symbolizes some piece of the program memory. Its
name is written at the top of the scene. There are scattered
pieces of code on the path. According to the memory name, the
player must specify which pieces of code are stored in it and
which are not. Those that are stored there must be taken.

B. Variable can store address of another variable
The variable may store the value or the address of another

variable. This information is very important for the pointers,
because the pointer stores the address of another variable. We
want the player to realize that. The second level is therefore
dedicated to this topic. At the beginning of the level, the
monster finds itself in a small. She may notice that the village
is divided into two parts. One part is called the main and the
second function. Part names symbolize function names in C
language. The function “function” is a function called in the
main function of the program. In addition, he will see the river
and floating canoe. The canoe will bring the variables to the
village. They always fall on the bank of the river. It is the duty
of a monster to find the new house for variable. Instructions to
find accommodation are written directly on the variable. The
monster takes the variable and bring it to its home. There are
three options at the house. Whether it wants to accommodate
the variable's address, its value or nothing else. This is to
symbolize variables, pointers to variables, and the assignment
of variables to a function by value or by reference.

REDŽÚR 2018 | 12th International Workshop on Multimedia Information and Communication Technologies | 15 May 2018, Bratislava, Slovakia

61

Figure 1.: The memory village

C. The basic syntax of pointers
The third level deals with basic syntax of indicators. The level
is situated to small meadow. The meadow is full of tables with
pieces of code. These tables are answers to questions. These
questions are displayed on the big table at the end of meadow.
The monster has to find the right answer to question, which
she see. When monster hits the right answer, the question is
changed to other. Monster has to find the right answer again,
till she responds to all questions.

D. The exchange of variable’s values in the function
In this level, we want to show the usability of pointers. We

show it on typical example. In the scene, there is a code,
which wants to exchange values of two variables in the
function. It is impossible without pointers because the called
function makes copies of variable and exchange only them.
With the pointers, function can work with these values directly
in the memory. The monster finds herself in the labyrinth.
The sample code is shown at the end of the labyrinth. Some
pieces are incorrect in that code. They has got colorful
background. The monster has to find the correct pieces and
replace incorrect parts by correct parts.

Figure 2.: The monster carries a stone

E. Pointers and arrays
Array is a block of memory. The first element of array is

also pointer to that block of memory. For this reason, we want
to involve arrays among pointers. The monster find herself in
an tropical meadow. Animals, which live near the meadow,
meet here and prepare some questions for the monster. The
questions are about pointers and arrays. The monster has to
find correct answer for all of these questions.

F. Pointers and the structure
Structures are often used in C programs. They are very

powerful with pointers. The many things are implemented
with this couple, e.g. linked lists or binary trees. Because of

that, we decided to make level dedicated to this theme. The
monster finds herself in the meadow again. There is a code,
divided to some parts. The goal of code is create structure,
create linked list, fill elements of linked list with values and
finally print these values. The monster has to collect these
parts in the correct order. These parts must be collected in
correct order.

Figure 3.: The monster collect code
G. Array as argument of function

An array’s address is passed as argument to calling
function. This means that the function argument is a pointer to
the beginning of the array’s block of memory. This enables the
called function to change the field values so that they remain
altered even after it is terminated. The theme of array as a
function argument is introduced in this level. The player is
instructed in the level instructions, that the array is created in
main function. Then other function is called and an array is
passed to it. This function will change the array values. The
monster finds itself in front of two rows of stone blocks. One
row represents a field in the main function and the other
represents a field in the called functions. The duty of the
monster is to fill the array in called function with fruit. At the
same time, the field in the main function is also filled. After
filling monster gets a question as to why the field values
changed in the main functions as well.

H. Dynamically allocated memory
This part of pointers deal with memory part called heap.

This is used, when we need a lot of memory or when we want
to have something stored even the function returns. There are
several functions for working with heap. In this level we want
to introduce them. In this scene is the room with eight pictures
with memory state. Samples of function, which work with
heap, are scattered around the meadow. The monster has to
collect these samples and assign them to memory pictures.

I. The most common mistakes in pointers
Pointers is not easy theme for beginning programmer. For

this reason we decided to finish this game with common
mistakes. This level shows them. The goal of this level is to
help start better to beginning programmers. The mistakes are
shown in code. The monster has to determine if the code is
good or bad. Then she has to hit “good” button or “bad”
button. The code is changed after answer.

IV. DESCRIPTION OF SCENES

In this game, there are also other scenes, except level
scenes. They are described here.

REDŽÚR 2018 | 12th International Workshop on Multimedia Information and Communication Technologies | 15 May 2018, Bratislava, Slovakia

62

A. The scene with settings
This scene is first and it is very simple. There are just two

flags and one button. The player can choose language by
clicking to flag. The game is started after click onto flag. The
button opens scene with help.

Figure 4.: Flags in scene with setting

B. The scene with help
This scene is very simple. There is just table with help and

one button. The player returns to the setting by clinking on it.

C. The introduction scene
The player gets to this scene from setting scene. He can

read the story of the game here. Also, he find here first port.
He can hit it and he find himself in first level.

D. The scene with instruction to the level
The player can read some instructions about next level here.

There is also one button. He can pass to the level by clicking
on it. This scene is shown before each level.

E. The scene with results
This scene is opened after each level. The player receive his

results here. He also gets an instruction here. This instruction
will be useful for him in the final level.

F. The final scene
This is scene, where monster seek her friends. She can help

herself with instructions from previous level. She also collect
small diamonds. This scene is little labyrinth.

Figure 5.: The monster goes to pick a diamond

G. The winning scene
This scene is ultimate scene. There are happy two saved

monsters with their happy savior.

Figure 6.: Happy monster are together

V. IMPLEMENTATION

 There are several background functionalities, which we
want to mention. Except this, we want to mention used
platforms and environment.

A. Background functionalities
This is group of functionalities, due which this game works.
1) The level loading
Each level has its number. In the each level, there is one

object called LevelBegin. This object has script SetLevelId
and this script has a public variable. The level number is set to
this variable. The level number is used when the instruction
level or result level is loaded. Due to this number, they know
which data they have to load. The script SetLevelId uses
singleton construction. Due this, it can provide and change this
variable in many scenes and all these scenes can see the
changes.

2) The result manager
The result manager count all points which are gained in

levels. It stores the total number of coins an manage the rules
for levels. Player has three lifes. It provide four changes for
him. If he finish level with less than four of them, the script
StateFrog activate object LastPort and the player can move to
next level. If he make four mistakes, the level restarts. The
good and bad answers are counted on the different places in
scripts. The player can see the state of his answers on the left.
There is “frog bar”, which shows him the count of answers.
The script called StateFrog takes care about all of that.

3) The language setting
The translation to languages starts in scene with settings.

There is an object called flags. It is parent object for flag’s
objects. It has several scripts. All of these scripts do the same.
They are made for each level which has textures with some
text. They take these textures to the array for several
languages. We have implemented it for two languages now.
These scripts stores textures and have method which returns
the array with textures. It returns them depending on choosed
language. The next used scripts are EnFlag and SkFlag. They
are children of the object flag. They takes his scripts which
stores and return textures. The make objects from them. We
can call them t-objects. When one of flags is fired, the script
EnFlag or SkFlag starts, depends on choosed flag. T-objects
take textures of choosed language and return them. Their
return values are set to another method. This method is from
Language class. It sets class textures variables to its
arguments. So texture variables of class Language are set to

REDŽÚR 2018 | 12th International Workshop on Multimedia Information and Communication Technologies | 15 May 2018, Bratislava, Slovakia

63

textures of choosed language. This class is realized by
singleton construction. The communication between language
„setters“ and language „getters“ works by this way. The class
Language sets all texts and textures to the desired language
and provide them to levels. Each scene which needs translate
some texture has a script PaintTexture. This script belongs to
the LevelBegin object and has the public array of
GameObjects. This array takes all objects which have to be
translated. The script aslo has object of Language class. This
object provide textures for these GameObjects. The translation
is made by following way. At first script gets the level
number. Then it determine which objects have to be textured
due to the level number. The script takes this objects and asks
about textures for the actual level. Then just paint textures to
the objects. The text translation is similar. In the Language
script, there are texts in two languages for each text output in
the game. These languages are extensible. Each level, which
needs to translate text, has got its own script to do this. These
scripts are similar. They have got public variables for taking
text GameObjects. They have got an object of Language class.
Methods of this class are used for set text in choosed
language. The Language class know the choosed language and
sets the text based on this choose.

B. Used platforms
 The game has to work in two platforms. It runs as desktop
game under Windows and it runs as virtual reality game under

Android. It is decided under which platform game will works
before game built. Differences between Android and Windows
versions are minimal. Google cardboard sdk features are used
when it is built for android. There is special player for virtual
reality and tiles for moving in virtual reality too. There are
special conditions which determine what platform is used.
Features for virtual reality or for the desktop are activated
depends on this conditions.

C. Enviroment
The game is developed in Unity 3D [1]. The most of game

objects comes from Unity Assets Store [2]. Remaining game
object are default Unity game objects. Textures was created in
the Corel Draw X5. Several textures come from the internet.
These textures are pictures of animals or pictures of fruit. The
Google cardboard sdk [3] si sused for virtual reality.

[1] Unity. 2017. Unity. https://unity3d.com/

[2] Unity. 2017. Unity. https://assetstore.unity.com/

[3] Anonym. 2018. Anonym.
https://developers.google.com/vr/develop/unity/get-started

ACKNOWLEDGMENT
The research described in the paper was

financially supported by the H2020 project NEWTON,
No. 688503 and VEGA project INOMET, No. 1/0800/16.

REFERENCES

REDŽÚR 2018 | 12th International Workshop on Multimedia Information and Communication Technologies | 15 May 2018, Bratislava, Slovakia

64

