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Abstract - This paper describes the process and experience of 

implementing and testing a virtual laboratory. The laboratory 

enables to install, configure and test selected SDN and NFV 

networks designed for both research and education. 
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I.  INTRODUCTION  

SDN (Software Defined Networking) is a network design 
concept with the physical separation of the network management 
plane from the transport layer. SDN is probably one of the most 
significant evolutionary trends in ICT. Developments in SDN 
and NFV (Network Funcion Virtualisation) are related to new 
network requirements, evolving trends in remote management 
of digital data, applications and IT services.  

SDN is programmable and centrally controlled, i.e. network 
intelligence is centralized in a software controller to provide 
global oversight over the entire network that appears to 
applications as a logic switch. SDN concept is based on the 
following three components: 

 SDN applications - programs that communicate via an 

API with an SDN controller. In addition, applications 

can collect information from the controller for 

decision-making purposes.  

 SDN controller - a logical unit that receives 

instructions from the application layer and transfers it 

to network elements. This communication also works 

in the opposite direction, i.e., the controller extracts 

data from hardware network devices and transfers 

them back to applications.  

 SDN network devices - provide network data 

transmission. 
SDN is based on open standards and devices from different 

vendors - new implementations are implemented through open 
standards, simplifying the construction and performance of the 
network because commands are provided by the SDN controller 
instead of multiple specific devices from different vendors. 

The architecture of NFV technology was designed by 
Network Functions Virtualization Industry Specification Group 
(ETSI NFV ISG) based on the following components:  

 NFVI (NFV Infrastructure) - provides virtual resources  
needed to support the implementation of virtualized 
network functions, 

 VNF (Virtualized Network Functions) - software 
implementation of network functions that is able to run 
by NFVI, 

 NFV MANO (Management and Orchestration) - covers 
orchestration and lifecycle management of physical and 
/ or software tools that support the virtualization and 
infrastructure lifecycle management. 

II. VIRTUAL LAB FOR SDN AND NFV - DESCRIPTION 

The system architecture of the Virtual Laboratory presented 
in [5] is depicted on Fig. 1. This design is characterized by an 
emphasis on high availability and includes device redundancy. 
The proposed system architecture supports the implementation 
of OpenStack, OpenDaylight and OPNFV platforms. 

 

Figure 1.  General architecture of SDN and NFV virtual lab 

 

OpenStack is a cloud-based software platform that provides 
simple implementation, high-availability and support for a large 
number of features. It does not have any proprietary hardware or 
software requirements and is designed to work with both fully-
virtual and bare-metal systems. 

OpenDaylight is a modular open source SDN platform 
developed to promote SDN and NFV. OpenDaylight enables 
network services across a spectrum of hardware in multivendor 
environments.  

OPNFV (Open Platform for NFV) brings together upstream 
components across compute, storage and network virtualization 
in order create an end-to-end platform.  The present OPNFV 
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release, Danube, builds and integrates multiple end-to-end 
networking stacks, including MANO, data plane acceleration, 
and architecture advancements. 

III. IMPLENTATION OF VIRTUAL LAB FOR SDN AND NFV  

For the purpose of the project, several different HP servers 
and several network elements were allocated. The first task was 
to design the deployment of OpenStack entities on available 
servers, and then to configure and integrate servers and network 
elements and to place them in a rack.  

The largest number of services will be run on the control 
node, and therefore the highest performance requirements will 
be placed on this server. Therefore, the most powerful available 
server (HP ProLiant DL360 G8) server was selected as the 
controller.  In the future, it is planned to install a second 
controller, which will allow the creation of an identical control 
node, which will increase the reliability and availability of 
OpenStack. 

The storage node was implemented on available network 
storage HP StorageWorks X1600 equipped with sufficient disk 
capacity (9 pieces of 1TB SATA drives). The Cinder is installed 
on the network storage node to implement the block store 
function. 

Other servers - the HP ProLiant DL380 G5 and the HP 
ProLiant DL380 G5, even if they are not as powerful as the 
control node server, serve as computing nodes with Nova 
service. 

The architecture thus proposed will allow future addition of 
such computational nodes to the environment and increase the 
computational resources of the entire environment. The big 
advantage of all servers is a support of hardware virtualization, 
so it is possible to use a KVM hypervisor that uses Kernel Linux 
as a hypervisor (more powerful than other standalone 
hypervisors on servers without hardware virtualization). 

 

Figure 2.  Rack with virtual lab hardware 

 

The router Mikrotik RB 1100 AH will be used to connect to 
the external network and we will use two switches ASUS 
GigaX2024 on the internal network. 

All servers and network elements were placed in a rack. The 
physical location of the servers and the design of the OpenStack 
services that are placed on them will be seen in the Fig.2. 

A. OpenStack Implementation 

In the first step of the implementation phase we focused our 
research activities on the OpenStack platform implementation. 
As it is illustrated in Fig. 2, OpenStack contains multiple 
components. It therefore has a wide range of applicability from 
cloud service providers, to large institutions that use it to create 
private clouds. 

Synchronization of services  

For proper synchronization of individual OpenStack 
services, it is necessary to ensure accurate, uniform set-up of the 
internal clock for all nodes. We will secure this sync using the 
NTP protocol. The implementation of NTP Chrony was used. 
Chrony is a simple and versatile NTP implementation that 
allows to synchronize internal system clocks with designated 
NTP servers, external reference clocks (e.g. GPS), or manually 
enter time using the keyboard. 

In OpenStack, it is necessary to have exact synchronization 
between its nodes, in case of inaccuracies in time between the 
nodes there may be error states, the message broker is especially 
vulnerable to this. Therefore, with such implementation, much 
greater emphasis is placed on synchronizing nodes in the internal 
environment than on synchronization with the outside world. An 
effective way to achieve such internal synchronization is to place 
another NTP server directly into this environment (most often 
directly on the control node) through which other nodes will be 
synchronized. In our laboratory, we have an available NTP 
server directly on the Mikrotik RB1100 router (Layer 4). 
According to this server, we will synchronize the internal NTP 
chrony server created on the control node (controller), which 
will also synchronize the other OpenStack nodes (Fig. 3). 

 

Figure 3.  NTP hierarchy 
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SQL database 

A lot of OpenStack services use a SQL database to store 
information. The MariaDB database is used in the project. 
Before installing OpenStack itself, it is necessary to install and 
prepare the SQL database. The database itself will run on 
controller, as it will run most of the services that use it. First of 
all, we need to install the mariaDB and python SQL client 
required for OpenStack: 

user@controller:~$apt install mariadb-server python-pymysql 

It was then necessary to properly perform the initial 
configuration of the database. Configuration can be done using 
a configuration file 99-openstack.cnf located at 
/etc/mysql/mariadb.conf.d. 

Message queues  

OpenStack uses message queues to coordinate operations 
and distribute state information between services. Individual 
services do not communicate directly with each other, but they 
communicate using AQMP (Advanced Message Queuing 
Protocol) through so called message brokers. AQMP is an 
application layer protocol using TCP for reliable messaging. 
Transmission can be secured using TLS (SSL). The main 
purpose of the AMQP protocol is to modify and manage the 
publisher and subscriber's reports to the extent that 
communication is universal and multi-vendor products can be 
used. The AMQP model has the following general view: 
messages are delivered to message exchange entities, which are 
often compared to post offices or mailboxes. Message Exchange 
Entities then distribute the copies of the stacks into queues using 
certain rules (rules are called "bindings"). AMQP brokers then 
deliver a message to customers subscribed to queues or their 
subscribers download them on request (fetch/pull). This model 
is shown in Fig. 4. 

 

Figure 4.  AQMP protocol model 

A RabbitMQ has been used as a AMQP broker in virtual lab, 
because it is the open source message broker software supported 
in the largest number of distributions and therefore has a great 
support for the OpenStack community. The RabbitMQ broker 
has been installed and connected to controller. 

Memcached 

Memcached is a generic distributed memory data caching 
system.  It is used to accelerate dynamically managed web sites 
by storing data and objects in RAM, reducing the number of 
external data reads. Memcached is a memory cache daemon that 
can be used by most OpenStack services to store temporary data 
i.e. tokens. Authentication mechanism of the identity services 
for other OpenStack services (Keystone) uses Memcached to 

store tokens in memory cache. Memcached has been installed as 
similar supplementary and support elements to the control node 
controller. 

OpenStack packages  

Different Linux distributions publish OpenStack packages 
directly as part of the distribution, or separately in case of 
disagreement on release dates. All nodes in the virtual lab have 
a Ubuntu server 16.04.2 LTS installed. Therefore, before 
installing and configuring individual OpenStack services on 
nodes, it was necessary to install OpenStack packages on all 
nodes. 

Identity service - Keystone 

Keystone is an OpenStack service that provides API client 
authentication, service discovery, and distributed multi-tenant 
authorization by implementing OpenStack’s Identity API. 

The HTTP Apache server with mod_wsgi was used to 
configure the Keystone service, because if the Keystone package 
is used that the entire configuration of the Apache server and the 
mod_wsgi module activation is directly controlled by the 
Keystone package. The Apache server handles requests for the 
identity service on ports 5000 and 35357 (which are also the 
ports on which Keystone itself is listening). Before configuring 
the service itself, it was necessary to create a database for the 
service to store the data. After the database was created, it was 
necessary to set access to the database both from the node on 
which it is located and for all other nodes. Each node will be 
authenticated against the database by a password. 

B. OpenDaylight Implementation 

In the second step of the implementation phase we 
implemented the OpenDaylight SDN controller. After the 
OpenDaylight installation (see Fig. 5) selected features have 
been installed, e.g. by the command feature:install odl-dlux-all 
an intuitive graphical user interface for OpenDaylight was 
installed.  

Currently there are 46 regular and 18 experimental features 
available. Except DLUX, several other features, e.g. L2 Switch 
(provides L2 /Ethernet/ forwarding across connected OpenFlow 
switches) or OVSDB OpenStack Neutron (provides OpenStack 
Network Virtualization using OpenDaylight’s OVSDB support) 
have been installed. 

 

Figure 5.  OpenDaylight CLI console 

Virtual Lab Network Architecture 
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Network architecture of Virtual Lab contains multiple 
separated VLANs, as it is illustrated in Fig. 6. This network 
separation provides better bandwidth management options and 
minimizes cross dependencies on each HW nodes during 
bandwidth consumable operations.  

 Management VLAN – serves for the internal 

communication of OpenStack components and access to 

the Internet. It also provides Out-of-Band management 

access to all servers. 

 Storage VLAN – Separates communication between a 

Storage server with block disks and individual instances 

running on Compute nodes from other network traffic. 

 Instance VLAN - serving on inter-instance 

communication.  

 

Figure 6.  Network architecture of SDN and NFV  Virtual laboratory 

IV. TESTING OF VIRTUAL LAB FOR SDN AND NFV  

The last step in virtual laboratory implementation consisted 
of testing the components of OpenStack and OpenDaylight. 
Each functionality has been tested after it has been deployed, 
with a specific set of commands to confirm its functionality and 
interoperability with other related features.  

Before testing the OpenStack deployment, a firmware 
upgrade of all servers was made. Upgrading was done both for 
safety reasons and in terms of functionality. 

The functionality of the OpenDaylight Controller 
installation was tested via the Mininet network simulator, which 
was then installed in a separate VM. Testing the ODL 
controller's functionality was due to its ability to manage a 
simulated network created by the Mininet simulator. 

V. CONCLUSIONS 

In this paper, the process of the implementation and testing of 

SDN and NFV virtual laboratory (OpenStack and 

OpenDaylight) is presented. The future work will be focused on 

the implementation and testing of the OPNFV  
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