
Virtual lab for SDN and NFV -

implementation and testing

Juraj Londák, Martin Medvecký, Peter Maduda, Pavol Podhradský 1
1 Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19, Bratislava, Slovakia

martin.medvecky@stuba.sk

Abstract - This paper describes the process and experience of

implementing and testing a virtual laboratory. The laboratory

enables to install, configure and test selected SDN and NFV

networks designed for both research and education.

Keywords – SDN, NFV

I. INTRODUCTION

SDN (Software Defined Networking) is a network design
concept with the physical separation of the network management
plane from the transport layer. SDN is probably one of the most
significant evolutionary trends in ICT. Developments in SDN
and NFV (Network Funcion Virtualisation) are related to new
network requirements, evolving trends in remote management
of digital data, applications and IT services.

SDN is programmable and centrally controlled, i.e. network
intelligence is centralized in a software controller to provide
global oversight over the entire network that appears to
applications as a logic switch. SDN concept is based on the
following three components:

 SDN applications - programs that communicate via an

API with an SDN controller. In addition, applications

can collect information from the controller for

decision-making purposes.

 SDN controller - a logical unit that receives

instructions from the application layer and transfers it

to network elements. This communication also works

in the opposite direction, i.e., the controller extracts

data from hardware network devices and transfers

them back to applications.

 SDN network devices - provide network data

transmission.
SDN is based on open standards and devices from different

vendors - new implementations are implemented through open
standards, simplifying the construction and performance of the
network because commands are provided by the SDN controller
instead of multiple specific devices from different vendors.

The architecture of NFV technology was designed by
Network Functions Virtualization Industry Specification Group
(ETSI NFV ISG) based on the following components:

 NFVI (NFV Infrastructure) - provides virtual resources
needed to support the implementation of virtualized
network functions,

 VNF (Virtualized Network Functions) - software
implementation of network functions that is able to run
by NFVI,

 NFV MANO (Management and Orchestration) - covers
orchestration and lifecycle management of physical and
/ or software tools that support the virtualization and
infrastructure lifecycle management.

II. VIRTUAL LAB FOR SDN AND NFV - DESCRIPTION

The system architecture of the Virtual Laboratory presented
in [5] is depicted on Fig. 1. This design is characterized by an
emphasis on high availability and includes device redundancy.
The proposed system architecture supports the implementation
of OpenStack, OpenDaylight and OPNFV platforms.

Figure 1. General architecture of SDN and NFV virtual lab

OpenStack is a cloud-based software platform that provides
simple implementation, high-availability and support for a large
number of features. It does not have any proprietary hardware or
software requirements and is designed to work with both fully-
virtual and bare-metal systems.

OpenDaylight is a modular open source SDN platform
developed to promote SDN and NFV. OpenDaylight enables
network services across a spectrum of hardware in multivendor
environments.

OPNFV (Open Platform for NFV) brings together upstream
components across compute, storage and network virtualization
in order create an end-to-end platform. The present OPNFV

83

REDŽÚR 2017 | 11th International Workshop on Multimedia Information and Communication Technologies | 19 May 2017, Bratislava, Slovakia

release, Danube, builds and integrates multiple end-to-end
networking stacks, including MANO, data plane acceleration,
and architecture advancements.

III. IMPLENTATION OF VIRTUAL LAB FOR SDN AND NFV

For the purpose of the project, several different HP servers
and several network elements were allocated. The first task was
to design the deployment of OpenStack entities on available
servers, and then to configure and integrate servers and network
elements and to place them in a rack.

The largest number of services will be run on the control
node, and therefore the highest performance requirements will
be placed on this server. Therefore, the most powerful available
server (HP ProLiant DL360 G8) server was selected as the
controller. In the future, it is planned to install a second
controller, which will allow the creation of an identical control
node, which will increase the reliability and availability of
OpenStack.

The storage node was implemented on available network
storage HP StorageWorks X1600 equipped with sufficient disk
capacity (9 pieces of 1TB SATA drives). The Cinder is installed
on the network storage node to implement the block store
function.

Other servers - the HP ProLiant DL380 G5 and the HP
ProLiant DL380 G5, even if they are not as powerful as the
control node server, serve as computing nodes with Nova
service.

The architecture thus proposed will allow future addition of
such computational nodes to the environment and increase the
computational resources of the entire environment. The big
advantage of all servers is a support of hardware virtualization,
so it is possible to use a KVM hypervisor that uses Kernel Linux
as a hypervisor (more powerful than other standalone
hypervisors on servers without hardware virtualization).

Figure 2. Rack with virtual lab hardware

The router Mikrotik RB 1100 AH will be used to connect to
the external network and we will use two switches ASUS
GigaX2024 on the internal network.

All servers and network elements were placed in a rack. The
physical location of the servers and the design of the OpenStack
services that are placed on them will be seen in the Fig.2.

A. OpenStack Implementation

In the first step of the implementation phase we focused our
research activities on the OpenStack platform implementation.
As it is illustrated in Fig. 2, OpenStack contains multiple
components. It therefore has a wide range of applicability from
cloud service providers, to large institutions that use it to create
private clouds.

Synchronization of services

For proper synchronization of individual OpenStack
services, it is necessary to ensure accurate, uniform set-up of the
internal clock for all nodes. We will secure this sync using the
NTP protocol. The implementation of NTP Chrony was used.
Chrony is a simple and versatile NTP implementation that
allows to synchronize internal system clocks with designated
NTP servers, external reference clocks (e.g. GPS), or manually
enter time using the keyboard.

In OpenStack, it is necessary to have exact synchronization
between its nodes, in case of inaccuracies in time between the
nodes there may be error states, the message broker is especially
vulnerable to this. Therefore, with such implementation, much
greater emphasis is placed on synchronizing nodes in the internal
environment than on synchronization with the outside world. An
effective way to achieve such internal synchronization is to place
another NTP server directly into this environment (most often
directly on the control node) through which other nodes will be
synchronized. In our laboratory, we have an available NTP
server directly on the Mikrotik RB1100 router (Layer 4).
According to this server, we will synchronize the internal NTP
chrony server created on the control node (controller), which
will also synchronize the other OpenStack nodes (Fig. 3).

Figure 3. NTP hierarchy

Controller

Router

Storage Node

Compute

 Nodes

Stratum 4

Stratum 5

172.20.200.0/24

172.20.200.1

84

REDŽÚR 2017 | 11th International Workshop on Multimedia Information and Communication Technologies | 19 May 2017, Bratislava, Slovakia

SQL database

A lot of OpenStack services use a SQL database to store
information. The MariaDB database is used in the project.
Before installing OpenStack itself, it is necessary to install and
prepare the SQL database. The database itself will run on
controller, as it will run most of the services that use it. First of
all, we need to install the mariaDB and python SQL client
required for OpenStack:

user@controller:~$apt install mariadb-server python-pymysql

It was then necessary to properly perform the initial
configuration of the database. Configuration can be done using
a configuration file 99-openstack.cnf located at
/etc/mysql/mariadb.conf.d.

Message queues

OpenStack uses message queues to coordinate operations
and distribute state information between services. Individual
services do not communicate directly with each other, but they
communicate using AQMP (Advanced Message Queuing
Protocol) through so called message brokers. AQMP is an
application layer protocol using TCP for reliable messaging.
Transmission can be secured using TLS (SSL). The main
purpose of the AMQP protocol is to modify and manage the
publisher and subscriber's reports to the extent that
communication is universal and multi-vendor products can be
used. The AMQP model has the following general view:
messages are delivered to message exchange entities, which are
often compared to post offices or mailboxes. Message Exchange
Entities then distribute the copies of the stacks into queues using
certain rules (rules are called "bindings"). AMQP brokers then
deliver a message to customers subscribed to queues or their
subscribers download them on request (fetch/pull). This model
is shown in Fig. 4.

Figure 4. AQMP protocol model

A RabbitMQ has been used as a AMQP broker in virtual lab,
because it is the open source message broker software supported
in the largest number of distributions and therefore has a great
support for the OpenStack community. The RabbitMQ broker
has been installed and connected to controller.

Memcached

Memcached is a generic distributed memory data caching
system. It is used to accelerate dynamically managed web sites
by storing data and objects in RAM, reducing the number of
external data reads. Memcached is a memory cache daemon that
can be used by most OpenStack services to store temporary data
i.e. tokens. Authentication mechanism of the identity services
for other OpenStack services (Keystone) uses Memcached to

store tokens in memory cache. Memcached has been installed as
similar supplementary and support elements to the control node
controller.

OpenStack packages

Different Linux distributions publish OpenStack packages
directly as part of the distribution, or separately in case of
disagreement on release dates. All nodes in the virtual lab have
a Ubuntu server 16.04.2 LTS installed. Therefore, before
installing and configuring individual OpenStack services on
nodes, it was necessary to install OpenStack packages on all
nodes.

Identity service - Keystone

Keystone is an OpenStack service that provides API client
authentication, service discovery, and distributed multi-tenant
authorization by implementing OpenStack’s Identity API.

The HTTP Apache server with mod_wsgi was used to
configure the Keystone service, because if the Keystone package
is used that the entire configuration of the Apache server and the
mod_wsgi module activation is directly controlled by the
Keystone package. The Apache server handles requests for the
identity service on ports 5000 and 35357 (which are also the
ports on which Keystone itself is listening). Before configuring
the service itself, it was necessary to create a database for the
service to store the data. After the database was created, it was
necessary to set access to the database both from the node on
which it is located and for all other nodes. Each node will be
authenticated against the database by a password.

B. OpenDaylight Implementation

In the second step of the implementation phase we
implemented the OpenDaylight SDN controller. After the
OpenDaylight installation (see Fig. 5) selected features have
been installed, e.g. by the command feature:install odl-dlux-all
an intuitive graphical user interface for OpenDaylight was
installed.

Currently there are 46 regular and 18 experimental features
available. Except DLUX, several other features, e.g. L2 Switch
(provides L2 /Ethernet/ forwarding across connected OpenFlow
switches) or OVSDB OpenStack Neutron (provides OpenStack
Network Virtualization using OpenDaylight’s OVSDB support)
have been installed.

Figure 5. OpenDaylight CLI console

Virtual Lab Network Architecture

85

REDŽÚR 2017 | 11th International Workshop on Multimedia Information and Communication Technologies | 19 May 2017, Bratislava, Slovakia

Network architecture of Virtual Lab contains multiple
separated VLANs, as it is illustrated in Fig. 6. This network
separation provides better bandwidth management options and
minimizes cross dependencies on each HW nodes during
bandwidth consumable operations.

 Management VLAN – serves for the internal

communication of OpenStack components and access to

the Internet. It also provides Out-of-Band management

access to all servers.

 Storage VLAN – Separates communication between a

Storage server with block disks and individual instances

running on Compute nodes from other network traffic.

 Instance VLAN - serving on inter-instance

communication.

Figure 6. Network architecture of SDN and NFV Virtual laboratory

IV. TESTING OF VIRTUAL LAB FOR SDN AND NFV

The last step in virtual laboratory implementation consisted
of testing the components of OpenStack and OpenDaylight.
Each functionality has been tested after it has been deployed,
with a specific set of commands to confirm its functionality and
interoperability with other related features.

Before testing the OpenStack deployment, a firmware
upgrade of all servers was made. Upgrading was done both for
safety reasons and in terms of functionality.

The functionality of the OpenDaylight Controller
installation was tested via the Mininet network simulator, which
was then installed in a separate VM. Testing the ODL
controller's functionality was due to its ability to manage a
simulated network created by the Mininet simulator.

V. CONCLUSIONS

In this paper, the process of the implementation and testing of

SDN and NFV virtual laboratory (OpenStack and

OpenDaylight) is presented. The future work will be focused on

the implementation and testing of the OPNFV

ACKNOWLEDGMENT

Research described in the paper was financially supported by the

H2020 project NEWTON, No. 688503 and VEGA project

INOMET, No. 1/0800/16

REFERENCES

[1] OpenFlow and Software Defined Networks Presentation.
http://www.openflow.org/documents/OpenFlow_2011.pps

[2] Chiosi, M., Wright, S., Clarke, D., Willis, P., at al.: Network Functions
Virtualisation: Network Operator Perspectives on Industry Progress,
http://portal.etsi.org/NFV/NFV_White_Paper2.pdf

[3] ETSI GS NFV-SWA 001 V1.1.1: Network Functions Virtualisation:
Virtual Network Functions Architecture. France: ETSI, December 2014

[4] ETSI GS NFV-INF 001 V1.1.1: Network Functions Virtualisation:
Infrastructure Overview. France: ETSI, January 2015

[5] Londák, J., Medvecký, M., Tóth, T., Podhradský, P.: Virtual lab for SDN
and NFV - concept and architecture, in Proceedings of International
Workshop Redžur 2017, Bratislava, Slovakia

86

REDŽÚR 2017 | 11th International Workshop on Multimedia Information and Communication Technologies | 19 May 2017, Bratislava, Slovakia

